# Prepare Data set.seed(1230) #data <- read.csv("CO2DriversEU_dataset.csv") data("EU_emissions_road") data <- EU_emissions_road data$lgdp_sq <- data$lgdp^2 data$transport.emissions_pc <- data$transport.emissions/data$pop data$ltransport.emissions_pc <- log(data$transport.emissions_pc) data$L1.ltransport.emissions_pc <- NA # For each country, shift the values of 'ltransport.emissions_pc' by one position for (i in unique(data$country)) { # Extract the 'ltransport.emissions_pc' values for the current country current_country_values <- data$ltransport.emissions_pc[data$country == i] # Shift the values by one position and insert an NA value at the beginning shifted_values <- c(NA, current_country_values[-length(current_country_values)]) # Assign the shifted values to the corresponding rows in 'L1.ltransport.emissions_pc' data$L1.ltransport.emissions_pc[data$country == i] <- shifted_values } # data %>% # dplyr::group_by(country) %>% # dplyr::mutate(test = dplyr::lag(ltransport.emissions_pc)) %>% # dplyr::ungroup() %>% # dplyr::mutate(istrue = test == L1.ltransport.emissions_pc) %>% # dplyr::distinct(istrue) # Group specification EU15 <- c("Austria", "Belgium", "Germany", "Denmark", "Spain", "Finland", "France", "United Kingdom", "Ireland", "Italy", "Luxembourg", "Netherlands", "Greece", "Portugal", "Sweden") # EU16 <- c("Croatia", "Bulgaria", "Cyprus","Czech Republic", "Estonia", # "Hungary", "Lithuania", "Latvia", "Malta", "Poland", "Romania", # "Slovak Republic", "Slovenia", "Switzerland", "Iceland", # "Norway") # EU31 <- c(EU15, EU16) ###### Analysis: # Prepare sample and data sample <- EU15 dat <- data[data$country %in% sample & data$year>=1995,] # Break analysis: is1 <- isatpanel( data = dat, formula = ltransport.emissions_pc ~ lgdp + lgdp_sq + lpop, index = c("country", "year"), effect = "twoways", iis = T, fesis = T, t.pval=.05, print.searchinfo = FALSE ) # Break analysis: is2 <- isatpanel( data = dat, formula = ltransport.emissions_pc ~ lgdp + lgdp_sq + lpop, index = c("country", "year"), effect = "twoways", iis = T, fesis = T, t.pval=.01, print.searchinfo = FALSE ) # Break analysis: is3 <- isatpanel( data = dat, formula = ltransport.emissions_pc ~ lgdp + lgdp_sq + lpop, index = c("country", "year"), effect = "twoways", iis = T, fesis = T, t.pval=.001, print.searchinfo = FALSE ) get_countries <- function(x){ df <- x$estimateddata indicators <- x$isatpanel.result$aux$mX indicators <- indicators[,!colnames(indicators) %in% names(df)] df <- cbind(df,indicators) identify_indicator_timings(df, uis_breaks = NULL) } is1_coef <- coef(is1$isatpanel.result)[get_countries(is1)$fesis$name] is2_coef <- coef(is2$isatpanel.result)[get_countries(is2)$fesis$name] is3_coef <- coef(is3$isatpanel.result)[get_countries(is3)$fesis$name] is1_coef <- is1_coef[order(names(is1_coef))] is2_coef <- is2_coef[order(names(is2_coef))] is3_coef <- is3_coef[order(names(is3_coef))] is1_tib <- data.frame(name = c("fesisFinland.2000", "fesisGermany.2002", "fesisIreland.2011", "fesisIreland.2015", "fesisLuxembourg.2007", "fesisSweden.2001"), coef = c(-0.103, -0.105, -0.087, -0.148, -0.136, -0.095)) is2_tib <- data.frame(name = c("fesisFinland.2000", "fesisGermany.2002", "fesisIreland.2015", "fesisSweden.2001"), coef = c(-0.123, -0.131, -0.192, -0.103)) is3_tib <- data.frame(name = c("fesisFinland.2000", "fesisGermany.2002", "fesisIreland.2011", "fesisLuxembourg.2015", "fesisSweden.2001"), coef = c(-0.128, -0.108, -0.127, -0.214, -0.110)) test_that("Equal Breaks as in Koch et al are identified",{ is1_tib_estimated <- data.frame(name = names(is1_coef[is1_coef < 0]), coef = as.numeric(round(is1_coef[is1_coef < 0], 3))) expect_equal(is1_tib, is1_tib_estimated) is2_tib_estimated <- data.frame(name = names(is2_coef[is2_coef < 0]), coef = as.numeric(round(is2_coef[is2_coef < 0], 3))) expect_equal(is2_tib, is2_tib_estimated) is3_tib_estimated <- data.frame(name = names(is3_coef[is3_coef < 0]), coef = as.numeric(round(is3_coef[is3_coef < 0], 3))) expect_equal(is3_tib, is3_tib_estimated) }) test_that("Equal Break Uncertainties as in Koch et al are identified",{ break_is1 <- break_uncertainty( is1, interval = 0.99) break_is2 <- break_uncertainty( is2, interval = 0.99) break_is3 <- break_uncertainty( is3, interval = 0.99) break_is1 <- break_is1[break_is1$coef < 0,] break_is2 <- break_is2[break_is2$coef < 0,] break_is3 <- break_is3[break_is3$coef < 0,] row.names(break_is1) <- 1:nrow(break_is1) row.names(break_is2) <- 1:nrow(break_is2) row.names(break_is3) <- 1:nrow(break_is3) is1_tib_break <- data.frame(name = c("fesisFinland.2000", "fesisGermany.2002", "fesisIreland.2011", "fesisIreland.2015", "fesisLuxembourg.2007", "fesisSweden.2001"), tci = c(2, 2, 3, 1, 1, 2)) is2_tib_break <- data.frame(name = c("fesisFinland.2000", "fesisGermany.2002", "fesisIreland.2015", "fesisSweden.2001"), tci = c(2, 1, 1, 2)) is3_tib_break <- data.frame(name = c("fesisFinland.2000", "fesisGermany.2002", "fesisIreland.2011", "fesisLuxembourg.2015", "fesisSweden.2001"), tci = c(2, 3, 2, 1, 3)) expect_equal(is1_tib_break, break_is1[,c("name", "tci")]) expect_equal(is2_tib_break, break_is2[,c("name", "tci")]) expect_equal(is3_tib_break, break_is3[,c("name", "tci")]) }) test_that("Koch et al: Standard Error Corrections",{ is1_robust_nocluster <- robust_isatpanel(is1, cluster = FALSE)$robust is2_robust_nocluster <- robust_isatpanel(is2, cluster = FALSE)$robust is3_robust_nocluster <- robust_isatpanel(is3, cluster = FALSE)$robust is1_robust_nocluster_round <- round(is1_robust_nocluster[is1_robust_nocluster[,1,drop = FALSE]<0 & grepl("^fesis",row.names(is1_robust_nocluster)),2,drop = FALSE],3) is2_robust_nocluster_round <- round(is2_robust_nocluster[is2_robust_nocluster[,1,drop = FALSE]<0 & grepl("^fesis",row.names(is2_robust_nocluster)),2,drop = FALSE],3) is3_robust_nocluster_round <- round(is3_robust_nocluster[is3_robust_nocluster[,1,drop = FALSE]<0 & grepl("^fesis",row.names(is3_robust_nocluster)),2,drop = FALSE],3) is1_robust_nocluster_ready <- data.frame(name = row.names(is1_robust_nocluster_round), se = is1_robust_nocluster_round[,1]) is2_robust_nocluster_ready <- data.frame(name = row.names(is2_robust_nocluster_round), se = is2_robust_nocluster_round[,1]) is3_robust_nocluster_ready <- data.frame(name = row.names(is3_robust_nocluster_round), se = is3_robust_nocluster_round[,1]) is1_robust_nocluster_ready <- is1_robust_nocluster_ready[order(is1_robust_nocluster_ready$name),] is2_robust_nocluster_ready <- is2_robust_nocluster_ready[order(is2_robust_nocluster_ready$name),] is3_robust_nocluster_ready <- is3_robust_nocluster_ready[order(is3_robust_nocluster_ready$name),] row.names(is1_robust_nocluster_ready) <- NULL row.names(is2_robust_nocluster_ready) <- NULL row.names(is3_robust_nocluster_ready) <- NULL is1_robust_nocluster_paper <- data.frame(name = c("fesisFinland.2000", "fesisGermany.2002", "fesisIreland.2011", "fesisIreland.2015", "fesisLuxembourg.2007", "fesisSweden.2001"), se = c(0.006, 0.008, 0.012, 0.031, 0.012, 0.008)) is2_robust_nocluster_paper <- data.frame(name = c("fesisFinland.2000", "fesisGermany.2002", "fesisIreland.2015", "fesisSweden.2001"), se = c(0.014, 0.011, 0.032, 0.01)) is3_robust_nocluster_paper <- data.frame(name = c("fesisFinland.2000", "fesisGermany.2002", "fesisIreland.2011", "fesisLuxembourg.2015", "fesisSweden.2001"), se = c(0.018, 0.02, 0.016, 0.034, 0.015)) expect_equal(is1_robust_nocluster_paper, is1_robust_nocluster_ready) expect_equal(is2_robust_nocluster_paper, is2_robust_nocluster_ready) expect_equal(is3_robust_nocluster_paper, is3_robust_nocluster_ready) }) # ##### uncertainty for break dates # # ####This file compiles the uncertainty functions needed for sis # # # library(mvtnorm) # # ### Function for rotation # rotate <- function(x) t(apply(x, 2, rev)) # # ### Function to extract matrices # mextrc <- function(x, p=0, k=0){ # # k=2*(plus minus), i.e. total range, and p is where it starts relative to the center, so k is the size, and p is the starting point # # mid <- NROW(x)/2 # out <- 2*k # rotate <- function(x) t(apply(x, 2, rev)) # subx <- x[(mid+p-k):(mid+p-k+out+1),(mid+p-k):(mid+p-k+out+1)] # subx <- rotate(rotate(rotate(x)))[(mid+p-k):(mid+p-k+out+1),(mid+p-k):(mid+p-k+out+1)] # output <- rotate(rotate(rotate(subx))) # return(output) # } # # ##################################################### # # ####### Function to compute approximate SIS uncertainty # # isattime <- function(m, delta, plot=FALSE){ # # ####################################### # # lim <- 2*m # sigma <- diag(2*m) # a_lim <- m-1 # # ########-----------Constructing general matrix # # up0 <- (matrix(NA, nrow=2*m, ncol=1)) # up <- (matrix(NA, nrow=2*m, ncol=(m))) # upg.a <- seq(1:lim) # upg <- c(rev(upg.a*(-1)), upg.a) # upg[(lim+1):(lim+m-1)] # # # ###loop to generate # for (j in 1:m){ # # #T0 values # up0[j, 1] <- delta/2*((m+1)-j) # up0[j+m, 1] <- delta/2*j # # #Tp+m values # ##loop over rows # for (l in 1:(m+1)) # { # #j is the column # up[l,j] <- delta/2 *(((m+1)-l)-j) # up[l+m-1, j] <- delta/2 * upg[(lim-1-j+l)] # } # } # # # up.tot <- cbind(up0, up) # # #######------Constructing the general A Matrix # # A <- matrix(0, nrow=lim, ncol=lim) # for (i in 1:lim){ # A[i, 1:i] <- 1 # } # A # Ar <- rotate(A) # Arm <- (-1)*rotate(rotate(rotate(A))) # Az <- matrix(0, nrow=lim, ncol=lim) # Ag <- rbind(cbind(Az, Ar), cbind(Arm, Az)) # Ag # Agb <- Ag*(-1) # # ###A0 # A0 <- mextrc(Agb, 0, a_lim )*(-1) # A0gsigma <- A0 %*% sigma %*% t(A0) # p0 <- pmvnorm(mean=rep(0, NROW(A0gsigma)), sigma=A0gsigma, lower=rep(-Inf, NROW(A0gsigma)), upper=up.tot[,1] )[1] # p0 # # p_m <- matrix(NA, m, 1) # # ### up to m # for (i in 1:m){ # Ai <- mextrc(Agb, i, a_lim ) # Aisigma <- Ai %*% sigma %*% t(Ai) # pi <- pmvnorm(mean=rep(0, NROW(Aisigma)), sigma=Aisigma, lower=rep(-Inf, NROW(Aisigma)), upper=up.tot[,(i+1)] )[1] # p_m[i,1] <- pi # } # # p.tot <- as.matrix(c(rev(p_m), p0, p_m)) # p.tot # colSums(p.tot) # # x <- seq(from = -m, to=m, by=1) # # if (plot){ # plot(x, p.tot, type='hist') # } # return(p.tot) # } # # ####################################################### # ################################################# # # # # ############# Input # # model.names <- c("EU15_levelpc_p0.05", "EU15_levelpc_p0.01", "EU15_levelpc_p0.001") # # dat.input <- list() #break magnitudes (estimated coefficients) # breaknames <- list() #break title for overview # se <- c() #s.e. of regression (i.e. sqrt of estimated error variance) # # # Extract coeffs and se from model .Rds: # for(k in 1:length(model.names)){ # #mod <- model.names[k] # # #raw <- readRDS(paste0("../../A Break Detection/Analysis4a (level)/Analysis4a/", mod, ".Rds")) # raw <- list(is1, is2, is3)[k][[1]] # # finalmodel <- raw$isatpanel.result$mean.results # # coeffs <- finalmodel$coef[stringr::str_detect(row.names(finalmodel), "fesis")] # breaks <- row.names(finalmodel)[stringr::str_detect(row.names(finalmodel), "fesis")] %>% # stringr::str_remove("fesis") # # sigm <- sqrt(raw$isatpanel.result$sigma2) # # # dat.input[[k]] <- coeffs # se[k] <- sigm # breaknames[[k]] <- breaks # } # # # ############ Calibration parameters # interval <- 0.99 #approx. level of interval. CI level will be at least > interval. So 0.99 is a 99% CI, and interval will be the integer that gets at least > 99% coverage # m <- 15 #maximum range of interval (can leave at 15 for default). # # set.seed(1234) # # ####################################### # ################# # # for(k in 1:length(model.names)){ # dat <- dat.input[[k]]/se[k] #standardizing break magnitudes # prob <- matrix(NA, NROW(dat), 2*m+1) # ci <- matrix(NA, NROW(dat), 4) # # for (i in 1:NROW(dat)){ # #i <- 1 # time <- isattime(m, abs(dat[i])) #external function to compute approx. CI # # prob[i,] <- t(time) # cu.p <- matrix(NA, (length(time)+1)/2, 1) # for (j in 1:((length(time)+1)/2)) # { # start <- (length(time)+1)/2 # cu.p[j,1] <- sum(time[((start-j+1):(start+j-1))]) # } # # thresh <- interval # ci.v <- min(which(abs(cu.p)>thresh)) # ci.d <- ci.v - 1 # cu.p[ci.v] # # ci[i,1] <- ci.d #interval is given by estimated date + - ci.d # ci[i,2] <- cu.p[ci.v] #coverage probability # ci[i,3] <- breaknames[[k]][i] #which break is considered # ci[i,4] <- dat.input[[k]][i] #break magnitude # # } # # colnames(ci) <- c("half_range", "coverage", "break_title", "break_magnitude") # # cat(paste0("\n Model ", k, "/", length(model.names), " done.")) # }