## ## ## A Monte Carlo study to test geostan implementation of spatial lag and error models ## ## Estimates should have following mathematical properties: ## Non-biased ## Monte Carlo rmse = reported SE ## Monte Carlo interval coverage rates = nominal coverage rates ## #devtools::load_all("~/dev/geostan") library(geostan) # flag for running Monte Carlo test or just code once full_test <- FALSE ## no. iterations M <- ifelse(full_test, 20, 1) # generate y using SLM or SEM #sar_type <- commandArgs(trailingOnly = TRUE) #sar_type <- match.arg(sar_type, c("SEM", "SLM")) sar_type <- "SEM" ## a regular grid ncol = 20 nrow = 20 sars <- prep_sar_data2(ncol, nrow, quiet = TRUE) cars <- prep_car_data2(ncol, nrow, quiet = TRUE) W <- sars$W N <- nrow(W) ## View the grid by uncommenting and running: #library(sf) #sfc = sf::st_sfc(st_polygon(list(rbind(c(0,0), c(ncol,0), c(ncol,nrow), c(0,0))))) #geom <- sf::st_make_grid(sfc, cellsize = 1, square = TRUE) #df <- data.frame(geometry = geom) #grid <- sf::st_as_sf(df) # plot(grid) # iterate: b = 0.5 g = -0.5 rho.x <- 0.6 sigma.y = 0.3 rho.y = 0.6 pars <- c(const = 0, gamma = g, beta = b, rho = rho.y, scale = sigma.y) res <- sapply(1:M, FUN = function(i) { x <- geostan::sim_sar(rho = rho.x, w = W, type = "SEM", quick = TRUE) wx <- as.numeric( W %*% x ) y <- geostan::sim_sar(mu = g * wx + b * x, rho = rho.y, w = W, sigma = sigma.y, type = sar_type, quick = TRUE) dat <- cbind(x = x , y = y) fit_sem <- geostan::stan_sar(y ~ x, data = dat, type = "SDEM", sar_parts = sars, chains = 1, iter = 500, quiet = TRUE, slim = TRUE ) |> suppressWarnings() fit_car <- geostan::stan_car(y ~ x, slx = ~ x, data = dat, car_parts = cars, chains = 1, iter = 500, quiet = TRUE, slim = TRUE ) |> suppressWarnings() fit_glm <- geostan::stan_glm(y ~ x, slx = ~ x, data = dat, C = cars$C, chains = 1, iter = 500, quiet = TRUE, slim = TRUE ) |> suppressWarnings() x <- c(SEM = fit_sem$summary[c('intercept', 'w.x', 'x', 'sar_rho', 'sar_scale'), 'mean'], CAR = fit_car$summary[c('intercept', 'w.x', 'x', 'car_rho', 'car_scale'), 'mean'], GLM = fit_glm$summary[c('intercept', 'w.x', 'x', 'rho', 'sigma'), 'mean']) return (x) }) cat("\n**\nEstimates (rounded) should be close to SEM-DGP parameters, with allowance for CAR/GLM rho and scale\n",M, "iterations\n**\n") est <- apply(res, 1, mean) |> round(1) out <- data.frame( Mod = attributes(est)$names, Par = attributes(pars)$names, DGP = pars, Est = est, Error = est - pars ) out |> print() |> suppressWarnings() write.csv(out, "check-SEM-CAR-GLM-estimates-monte-carlo-output.csv")