iter=10 refresh = 0 source("helpers.R") context("stan_car") test_that("Poisson CAR model works", { data(sentencing) SW( fit <- stan_car(sents ~ offset(log(expected_sents)), data = sentencing, car_parts = prep_car_data(shape2mat(sentencing, "B")), chains = 1, family = poisson(), iter = iter, refresh = refresh) ) expect_geostan(fit) }) test_that("CAR accepts covariate ME", { data(georgia) SW( fit <- stan_car(log(rate.male) ~ insurance + ICE, data = georgia, ME = prep_me_data(se = data.frame(insurance = georgia$insurance.se, ICE = georgia$ICE.se) ), car_parts = prep_car_data(shape2mat(georgia, "B")), centerx = TRUE, chains = 1, iter = iter, refresh = refresh) ) expect_geostan(fit) }) test_that("CAR accepts covariate ME with logit transform", { data(georgia) georgia$income <- georgia$income/1e3 georgia$income.se <- georgia$income.se/1e3 georgia$log_income <- log(georgia$income) georgia$log_income.se <- se_log(georgia$income, georgia$income.se) georgia$college <- georgia$college/1e3 georgia$college.se <- georgia$college.se/1e3 ME <- prep_me_data(se = data.frame(college = georgia$college.se, log_income = georgia$log_income.se), logit = c(TRUE, FALSE), bounds =c (0, Inf) ) SW( fit <- stan_car(log(rate.male) ~ college + log_income, data = georgia, ME = ME, car_parts = prep_car_data(shape2mat(georgia, "B")), chains = 1, iter = iter, refresh = refresh) ) expect_geostan(fit) }) test_that("CAR accepts covariate ME with WX, mixed ME-non-ME", { data(georgia) A <- shape2mat(georgia) cars <- prep_car_data(A) ME <- prep_me_data(se = data.frame(insurance = georgia$insurance.se), bounds = c(0, 100), car_parts = cars) SW( fit <- stan_car(log(rate.male) ~ insurance + ICE, slx = ~ insurance + ICE, data = georgia, ME = ME, car_parts = cars, chains = 1, iter = iter, refresh = refresh) ) expect_geostan(fit) }) test_that("DCAR example runs", { A <- shape2mat(georgia, "B") D <- sf::st_distance(sf::st_centroid(georgia)) A <- D * A cp <- prep_car_data(A, "DCAR", k = 1) fit <- stan_car(log(rate.male) ~ college, data = georgia, car = cp, iter = iter, chains = 1) expect_geostan(fit) }) test_that("CAR with censored y", { data(georgia) A <- shape2mat(georgia) cars <- prep_car_data(A) SW( fit <- stan_car(deaths.female ~ offset(log(pop.at.risk.female)) + ICE + college, censor_point = 9, data = georgia, chains = 1, family = poisson(), car_parts = cars, iter = iter, refresh = refresh ) ) expect_geostan(fit) }) test_that("Slim CAR works", { row = 20 col = 26 N <- row * col cdl <- prep_car_data2(row = row, col = col) x <- rnorm(n = N) y <- .75 *x + rnorm(n = N, sd = .5) df <- data.frame(y=y, x=x) SW( fit <- stan_car(y ~ x, slx = ~ x, data = df, car_parts = cdl, chains = 1, iter = iter, refresh = refresh, slim = TRUE) ) expect_geostan(fit) SW( fit <- stan_car(y ~ x, slx = ~ x, data = df, car_parts = cdl, chains = 1, iter = iter, refresh = refresh, drop = c('log_lik', 'fake')) ) expect_geostan(fit) })