## ## A Monte Carlo study to test measurement error models ## library(geostan) ## no. iterations M = 15 ## a regular grid ncol = 20 nrow = 20 sars <- prep_sar_data2(ncol, nrow, quiet = TRUE) cars <- prep_car_data2(ncol, nrow, quiet = TRUE) W <- sars$W N <- nrow(W) # iterate: b = 0.5 g = -0.5 rho.x = 0 ## checking ME, not checking spatial models rho.y = 0.6 sigma.y = 0.3 sigma.me = 0.3 pars <- c(const = 0, gamma = g, beta = b, rho = rho.y, scale = sigma.y) res <- sapply(1:M, FUN = function(i) { x <- sim_sar(w=W, rho=rho.x) Wx <- (W %*% x)[,1] mu <- b * x + g * Wx y <- sim_sar(w=W, rho=rho.y, mu = mu, sigma = sigma.y, type = "SEM") x = x + rnorm(N, sd = sigma.me) dat <- data.frame(y, x) ME <- prep_me_data(se = data.frame(x = rep(sigma.me, N))) if (rho.x > 0) ME <- prep_me_data(se = data.frame(x = rep(sigma.me, N)), car_parts = cars) fit_sem_me <- geostan::stan_sar(y ~ x, data = dat, type = "SDEM", sar_parts = sars, ME = ME, chains = 1, iter = 600, quiet = TRUE, slim = TRUE ) |> suppressWarnings() fit_sem <- geostan::stan_sar(y ~ x, data = dat, type = "SDEM", sar_parts = sars, ## ME = ME, ## chains = 1, iter = 600, quiet = TRUE, slim = TRUE ) |> suppressWarnings() ## fit_glm0 <- geostan::stan_glm(y ~ x, ## slx = ~ x, ## data = dat, ## ## ME = ME, ## ## C = cars$C, ## chains = 1, ## iter = 600, ## quiet = TRUE, ## slim = TRUE ## ) |> ## suppressWarnings() ## fit_car <- geostan::stan_car(y ~ x, ## slx = ~ x, ## data = dat, ## car_parts = cars, ## ME = ME, ## chains = 1, ## iter = 900, ## quiet = TRUE, ## slim = TRUE ## ) |> ## suppressWarnings() ## fit_glm <- geostan::stan_glm(y ~ x, ## slx = ~ x, ## data = dat, ## ME = ME, ## C = cars$C, ## chains = 1, ## iter = 900, ## quiet = TRUE, ## slim = TRUE ## ) |> ## suppressWarnings() x <- c( # GLM0 = fit_glm0$summary[c('intercept', 'w.x', 'x', 'rho', 'sigma'), 'mean'], # GLM = fit_glm$summary[c('intercept', 'w.x', 'x', 'rho', 'sigma'), 'mean'], SEM_ME = fit_sem_me$summary[c('intercept', 'w.x', 'x', 'sar_rho', 'sar_scale'), 'mean'], SEM = fit_sem$summary[c('intercept', 'w.x', 'x', 'sar_rho', 'sar_scale'), 'mean'] #, # CAR = fit_car$summary[c('intercept', 'w.x', 'x', 'car_rho', 'car_scale'), 'mean'] ) return (x) }) RMSE <- function(est, true) sqrt(mean(est - true)^2) g_res <- res |> subset(row.names(res) %in% c('SEM_ME2', 'SEM2')) ## subset(row.names(res) %in% c('GLM02', 'GLM2', 'SEM2', 'CAR2')) b_res <- res |> subset(row.names(res) %in% c('SEM_ME3', 'SEM3')) ## subset(row.names(res) %in% c('GLM03', 'GLM2', 'SEM3', 'CAR3')) cat("\n**\nRMSE of ME models: \n**\n") cat("\n**\nGamma\n**\n") apply(g_res, 1, RMSE, g) |> print(digits = 2) cat("\n**\nBeta\n**\n") apply(b_res, 1, RMSE, b) |> print(digits = 2) cat("\n**\nME models\nSEM Estimates (rounded) should be close to DGP parameters \n",M, "iterations\n**\n") est <- apply(res, 1, mean) est <- est[c('SEM2', 'SEM3', 'SEM_ME2', 'SEM_ME3')] out <- data.frame( # Mod = attributes(est)$names, Par = rep(c('Gamma', 'Beta'), 2), DGP = c(g, b, g, b), Est = est ) |> transform( Error = round(Est - DGP, 2) ) out |> print() write.csv(out, "check-ME-estimates-monte-carlo-output.csv")