iter=10 refresh = 0 source("helpers.R") context("missing y") test_that("Poisson missing y", { data(georgia) N = nrow(georgia) georgia$deaths.female[sample.int(N, size = 12)] <- NA georgia$deaths.female[sample.int(N, size = 3)] <- 0 SW( fit <- stan_car(deaths.female ~ offset(log(pop.at.risk.female)), data = georgia, car_parts = prep_car_data(shape2mat(georgia, "B")), chains = 1, family = poisson(), iter = iter, refresh = refresh) ) expect_geostan(fit) }) test_that("Binomial missing y", { data(georgia) A = shape2mat(georgia, "B") N = nrow(A) georgia$deaths.female[sample.int(N, size = 25)] <- NA georgia$y <- round(georgia$deaths.female / 10) georgia$y[sample.int(N, 5)] <- 0 georgia$f <- round(4 * georgia$deaths.female / 10) #georgia$f[which(!is.na(georgia$y))[1]] <- NA SW( fit <- stan_glm(cbind(y, f) ~ 1, data = georgia, chains = 1, family = binomial(), iter = iter, refresh = refresh) ) SW ( fit <- stan_icar(cbind(deaths.female, pop.at.risk.female) ~ 1, data = georgia, type = 'bym', C = A, chains = 1, family = binomial(), iter = iter, refresh = refresh) ) expect_geostan(fit) SW( fit <- stan_icar(cbind(y, f) ~ 1, data = georgia, C = A, type = 'bym', chains = 1, family = binomial(), iter = iter, refresh = refresh) ) expect_geostan(fit) }) test_that("ESF missing y", { data(georgia) georgia$deaths.female[1:10] <- NA georgia$y <- georgia$deaths.female georgia$f <- round(4 * georgia$deaths.female) SW( fit <- stan_esf(cbind(y, f) ~ log(income), data = georgia, C = shape2mat(georgia, "B"), chains = 1, family = binomial(), iter = iter, refresh = refresh) ) expect_geostan(fit) })