iter=15 refresh = 0 source("helpers.R") context("stan_sar") test_that("Poisson SAR model works", { data(sentencing) SW( fit <- stan_sar(sents ~ offset(log(expected_sents)), data = sentencing, C = shape2mat(sentencing, "W"), chains = 1, family = poisson(), iter = iter, refresh = refresh) ) expect_geostan(fit) }) test_that("SAR accepts covariate ME with logit transform", { data(georgia) georgia$income <- georgia$income/1e3 georgia$income.se <- georgia$income.se/1e3 georgia$log_income <- log(georgia$income) georgia$log_income.se <- se_log(georgia$income, georgia$income.se) georgia$college <- georgia$college/1e3 georgia$college.se <- georgia$college.se/1e3 ME <- prep_me_data(se = data.frame(college = georgia$college.se, log_income = georgia$log_income.se), logit = c(TRUE, FALSE), bounds =c (0, Inf) ) SW( fit <- stan_car(log(rate.male) ~ college + log_income, data = georgia, ME = ME, car_parts = prep_car_data(shape2mat(georgia, "B")), chains = 1, iter = iter, refresh = refresh) ) expect_geostan(fit) }) test_that("Slim SAR works", { row = 20 col = 26 N <- row * col sdl <- prep_sar_data2(row = row, col = col) x <- rnorm(n = N) y <- .75 *x + rnorm(n = N, sd = .5) df <- data.frame(y=y, x=x) fit <- stan_sar(y ~ x, slx = ~ x, data = df, sar_parts = sdl, chains = 1, iter = iter, refresh = refresh, slim = TRUE) expect_geostan(fit) fit <- stan_sar(y ~ x, slx = ~ x, data = df, sar_parts = sdl, chains = 1, iter = iter, refresh = refresh, drop = c('fitted')) expect_geostan(fit) })