library(fastRG) test_that("symmetric eigcv, calculations on A", { set.seed(27) B <- matrix(0.1, 5, 5) diag(B) <- 0.3 model <- sbm( n = 1000, B = B, expected_degree = 40, poisson_edges = FALSE, allow_self_loops = FALSE ) A <- sample_sparse(model) eigcv_result <- eigcv(A, k_max = 10) # expect_silent( # eigcv_result <- eigcv(A, k_max = 10) # ) expect_equal( eigcv_result$estimated_dimension, 5 ) }) test_that("asymmetric eigcv, calculations on A", { set.seed(27) B <- matrix(0.1, nrow = 5, ncol = 8) diag(B) <- 0.9 n <- 1000 model <- directed_dcsbm( theta_in = rep(1, n), theta_out = rep(1, n), B = B, expected_density = 0.05 ) A <- sample_sparse(model) eigcv_result <- eigcv(A, k_max = 10) # expect_silent( # eigcv_result <- eigcv(A, k_max = 10) # ) expect_equal( eigcv_result$estimated_dimension, 5 ) }) library(fastRG) test_that("symmetric eigcv, calculations on L", { set.seed(27) B <- matrix(0.1, 5, 5) diag(B) <- 0.3 model <- sbm( n = 1000, B = B, expected_degree = 40, poisson_edges = FALSE, allow_self_loops = FALSE ) A <- sample_sparse(model) eigcv_result <- eigcv(A, k_max = 10, laplacian = TRUE) # expect_silent( # eigcv_result <- eigcv(A, k_max = 10) # ) expect_equal( eigcv_result$estimated_dimension, 5 ) }) test_that("asymmetric eigcv, calculations on A", { set.seed(27) B <- matrix(0.1, nrow = 5, ncol = 8) diag(B) <- 0.9 n <- 1000 model <- directed_dcsbm( theta_in = rep(1, n), theta_out = rep(1, n), B = B, expected_density = 0.05 ) A <- sample_sparse(model) eigcv_result <- eigcv(A, k_max = 10, laplacian = TRUE) # expect_silent( # eigcv_result <- eigcv(A, k_max = 10) # ) expect_equal( eigcv_result$estimated_dimension, 5 ) })