# Check that when the default fit fails, which is usually when the CG algorithm # has been used, the reduction in step lengths implemented in fitGEV() can help tol <- 1e-2 # Simulate some data set.seed(17012023) n <- 100 x <- stats::runif(n) mu <- 1 + 2 * x sigma <- 1 xi <- 0.25 y <- gamlssx::rGEV(n = 1, mu = mu, sigma = sigma, nu = xi) data <- data.frame(y = as.numeric(y), x = x) # Fisher's scoring ## Fit model using the default RS method modRS <- fitGEV(y ~ gamlss::pb(x), data = data) print(modRS) muhat <- modRS$mu.coefficients sigmahat <- exp(modRS$sigma.coefficients) xihat <- modRS$nu.coefficients RSestimates <- as.numeric(c(muhat, sigmahat, xihat)) loglikRS <- logLik(modRS) # Fit model using the CG method modCG <- fitGEV(y ~ gamlss::pb(x), data = data, method = CG(), steps = TRUE) muhat <- modCG$mu.coefficients sigmahat <- exp(modCG$sigma.coefficients) xihat <- modCG$nu.coefficients CGestimates <- as.numeric(c(muhat, sigmahat, xihat)) loglikCG <- logLik(modCG) test_that("RS logLik equals CG logLik", { testthat::expect_equal(loglikRS, loglikCG, tolerance = tol) }) test_that("RS estimates equal CG estimates", { testthat::expect_equal(RSestimates, CGestimates, tolerance = tol) }) ## Check that stepLength = c(1, 1, 1) gives the same results as the default ## stepLength = 1 modCG2 <- fitGEV(y ~ gamlss::pb(x), data = data, method = CG(), stepLength = c(1, 1, 1)) muhat <- modCG2$mu.coefficients sigmahat <- exp(modCG2$sigma.coefficients) xihat <- modCG2$nu.coefficients CG2estimates <- as.numeric(c(muhat, sigmahat, xihat)) loglikCG2 <- logLik(modCG2) test_that("CG logLik equals CG2 logLik", { testthat::expect_equal(loglikCG, loglikCG2, tolerance = tol) }) test_that("RS estimates equal CG estimates", { testthat::expect_equal(CGestimates, CG2estimates, tolerance = tol) }) # Quasi-Newton scoring ## Fit model using the default RS method modRS <- fitGEV(y ~ gamlss::pb(x), data = data, scoring = "quasi") print(modRS) muhat <- modRS$mu.coefficients sigmahat <- exp(modRS$sigma.coefficients) xihat <- modRS$nu.coefficients RSestimates <- as.numeric(c(muhat, sigmahat, xihat)) loglikRS <- logLik(modRS) # Fit model using the CG method modCG <- fitGEV(y ~ gamlss::pb(x), data = data, method = CG(), scoring = "quasi") muhat <- modCG$mu.coefficients sigmahat <- exp(modCG$sigma.coefficients) xihat <- modCG$nu.coefficients CGestimates <- as.numeric(c(muhat, sigmahat, xihat)) loglikCG <- logLik(modCG) test_that("RS logLik equals CG logLik", { testthat::expect_equal(loglikRS, loglikCG, tolerance = tol) }) test_that("RS estimates equal CG estimates", { testthat::expect_equal(RSestimates, CGestimates, tolerance = tol) }) # For this example, we need extra attempts if using the CG algorithm # Set (extra) stepAttempts to 0 to see this # Fit model using the CG method test_that("CG needs extra iterations with a reduced step length", { testthat::expect_error(fitGEV(y ~ gamlss::pb(x), data = data, method = CG(), stepAttempts = 0)) })