R Under development (unstable) (2025-02-23 r87804 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > require("gamboostLSS") Loading required package: gamboostLSS Loading required package: mboost Loading required package: parallel Loading required package: stabs Attaching package: 'gamboostLSS' The following object is masked from 'package:stats': model.weights > ### Data generating process: > set.seed(1907) > x1 <- rnorm(500) > x2 <- rnorm(500) > x3 <- rnorm(500) > x4 <- rnorm(500) > x5 <- rnorm(500) > x6 <- rnorm(500) > mu <- exp(1.5 +1 * x1 +0.5 * x2 -0.5 * x3 -1 * x4) > sigma <- exp(-0.4 * x3 -0.2 * x4 +0.2 * x5 +0.4 * x6) > y <- numeric(500) > for( i in 1:500) + y[i] <- rnbinom(1, size = sigma[i], mu = mu[i]) > dat <- data.frame(x1, x2, x3, x4, x5, x6, y) > > model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, + control = boost_control(mstop = 10), + center = TRUE, method = "cyclic") > s1 <- stabsel(model, q = 5, PFER = 1, B = 10) ## warning is expected Run stabsel .................... Warning message: In stabsel.mboostLSS(model, q = 5, PFER = 1, B = 10) : 'mstop' too small in 11 of the 20 subsampling replicates to select 'q' base-learners; Increase 'mstop' bevor applying 'stabsel' > plot(s1) > plot(s1, type = "paths") > > model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, + control = boost_control(mstop = 10), + center = TRUE, method = "noncyclic") > s2 <- stabsel(model, q = 5, PFER = 1, B = 10) ## warning is expected Run stabsel .................... Warning message: In stabsel.mboostLSS(model, q = 5, PFER = 1, B = 10) : 'mstop' too small in 20 of the 20 subsampling replicates to select 'q' base-learners; Increase 'mstop' bevor applying 'stabsel' > plot(s2) > plot(s2, type = "paths") > > ## with informative sigma: > sigma <- exp(-0.4 * x3 -0.2 * x4 +0.2 * x5 + 1 * x6) > y <- numeric(500) > for( i in 1:500) + y[i] <- rnbinom(1, size = sigma[i], mu = mu[i]) > dat <- data.frame(x1, x2, x3, x4, x5, x6, y) > > model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, + control = boost_control(mstop = 10), + center = TRUE, method = "cyclic") > s3 <- stabsel(model, q = 5, PFER = 1, B = 10) ## warning is expected Run stabsel .................... Warning message: In stabsel.mboostLSS(model, q = 5, PFER = 1, B = 10) : 'mstop' too small in 18 of the 20 subsampling replicates to select 'q' base-learners; Increase 'mstop' bevor applying 'stabsel' > plot(s3) > plot(s3, type = "paths") > > model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, + control = boost_control(mstop = 10), + center = TRUE, method = "noncyclic") > s4 <- stabsel(model, q = 5, PFER = 1, B = 10) ## warning is expected Run stabsel .................... Warning message: In stabsel.mboostLSS(model, q = 5, PFER = 1, B = 10) : 'mstop' too small in 20 of the 20 subsampling replicates to select 'q' base-learners; Increase 'mstop' bevor applying 'stabsel' > plot(s4) > plot(s4, type = "paths") > > proc.time() user system elapsed 4.59 0.32 4.92