require("gamboostLSS") ### Data generating process: set.seed(1907) x1 <- rnorm(500) x2 <- rnorm(500) x3 <- rnorm(500) x4 <- rnorm(500) x5 <- rnorm(500) x6 <- rnorm(500) mu <- exp(1.5 +1 * x1 +0.5 * x2 -0.5 * x3 -1 * x4) sigma <- exp(-0.4 * x3 -0.2 * x4 +0.2 * x5 +0.4 * x6) y <- numeric(500) for( i in 1:500) y[i] <- rnbinom(1, size = sigma[i], mu = mu[i]) dat <- data.frame(x1, x2, x3, x4, x5, x6, y) model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = 10), center = TRUE, method = "cyclic") s1 <- stabsel(model, q = 5, PFER = 1, B = 10) ## warning is expected plot(s1) plot(s1, type = "paths") model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = 10), center = TRUE, method = "noncyclic") s2 <- stabsel(model, q = 5, PFER = 1, B = 10) ## warning is expected plot(s2) plot(s2, type = "paths") ## with informative sigma: sigma <- exp(-0.4 * x3 -0.2 * x4 +0.2 * x5 + 1 * x6) y <- numeric(500) for( i in 1:500) y[i] <- rnbinom(1, size = sigma[i], mu = mu[i]) dat <- data.frame(x1, x2, x3, x4, x5, x6, y) model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = 10), center = TRUE, method = "cyclic") s3 <- stabsel(model, q = 5, PFER = 1, B = 10) ## warning is expected plot(s3) plot(s3, type = "paths") model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = 10), center = TRUE, method = "noncyclic") s4 <- stabsel(model, q = 5, PFER = 1, B = 10) ## warning is expected plot(s4) plot(s4, type = "paths")