### # check gamboostLSS() require("gamboostLSS") set.seed(1907) x1 <- rnorm(1000) x2 <- rnorm(1000) x3 <- rnorm(1000) x4 <- rnorm(1000) x5 <- rnorm(1000) x6 <- rnorm(1000) mu <- exp(1.5 + 0.3 * x1^2 + 0.5 * x2 - 3 * sin(x3) -1 * x4) sigma <- exp(-0.2 * x4 + 0.2 * x5 + 0.4 * x6) y <- numeric(1000) for( i in 1:1000) y[i] <- rnbinom(1, size = sigma[i], mu = mu[i]) dat <- data.frame(x1, x2, x3, x4, x5, x6, y) model <- gamboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = 200)) coef(model) par(mfrow = c(3,2)) plot(dat$x3, fitted(model$mu, which = "x3"), main = "mu") lines(sort(dat$x3), - 3 * sin(dat$x3)[order(dat$x3)], col = "red") plot(dat$x3, fitted(model$sigma, which = "x3"), main = "sigma") lines(sort(dat$x3), - 3 * sin(dat$x3)[order(dat$x3)], col = "red") model[400] plot(dat$x3, fitted(model$mu, which = "x3"), main = "mu") lines(sort(dat$x3), - 3 * sin(dat$x3)[order(dat$x3)], col = "red") plot(dat$x3, fitted(model$sigma, which = "x3"), main = "sigma") lines(sort(dat$x3), - 3 * sin(dat$x3)[order(dat$x3)], col = "red") model[600] plot(dat$x3, fitted(model$mu, which = "x3"), main = "mu") lines(sort(dat$x3), - 3 * sin(dat$x3)[order(dat$x3)], col = "red") plot(dat$x3, fitted(model$sigma, which = "x3"), main = "sigma") lines(sort(dat$x3), - 3 * sin(dat$x3)[order(dat$x3)], col = "red")