R Under development (unstable) (2024-07-02 r86866 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(magrittr) > library(unittest) > > library(gadget3) > > actions <- list( + g3a_time( + start_year = 1990, + end_year = 1994, + c(3,3,3,3)), + g3l_random_dnorm('dnorm_log', + ~g3_param('dnorm_log', value = 0, random = TRUE), + mean_f = ~g3_param('dnorm_log_mean', value = 0, optimise = FALSE), + sigma_f = ~g3_param('dnorm_log_sigma', value = 1, optimise = FALSE), + weight = ~g3_param('dnorm_log_enabled', value = 0, optimise = FALSE)), + g3l_random_dnorm('dnorm_lin', + ~g3_param('dnorm_lin', value = 0, random = TRUE), + mean_f = ~g3_param('dnorm_lin_mean', value = 0, optimise = FALSE), + sigma_f = ~g3_param('dnorm_lin_sigma', value = 1, optimise = FALSE), + log_f = FALSE, + weight = ~g3_param('dnorm_lin_enabled', value = 0, optimise = FALSE)), + g3l_random_walk('walk_year', + ~g3_param_table('walk_year', expand.grid(cur_year = seq(start_year, end_year)), value = 0, random = TRUE), + sigma_f = ~g3_param('walk_year_sigma', value = 1, optimise = FALSE), + weight = ~g3_param('walk_year_enabled', value = 0, optimise = FALSE)), + g3l_random_walk('walk_step', + ~g3_param_table('walk_step', expand.grid( + cur_year = seq(start_year, end_year), + cur_step = 1:4), value = 0, random = TRUE), + sigma_f = ~g3_param('walk_step_sigma', value = 1, optimise = FALSE), + weight = ~g3_param('walk_step_enabled', value = 0, optimise = FALSE)), + list('999' = ~{})) > > model_fn <- g3_to_r(actions) > # model_fn <- edit(model_fn) > if (nzchar(Sys.getenv('G3_TEST_TMB'))) { + model_cpp <- g3_to_tmb(actions, trace = FALSE) + # model_cpp <- edit(model_cpp) + model_tmb <- g3_tmb_adfun(model_cpp, compile_flags = c("-O0", "-g")) + } else { + writeLines("# skip: not compiling TMB model") + model_cpp <- c() + } # skip: not compiling TMB model > > ok_group('g3l_random_dnorm', { + params <- attr(model_fn, 'parameter_template') + params['dnorm_log'] <- runif(1, 0, 10) + params['dnorm_log_mean'] <- runif(1, 0, 10) + params['dnorm_log_sigma'] <- runif(1, 0, 10) + params['dnorm_log_enabled'] <- 1 + params['dnorm_lin'] <- runif(1, 0, 10) + params['dnorm_lin_mean'] <- runif(1, 0, 10) + params['dnorm_lin_sigma'] <- runif(1, 0, 10) + params['dnorm_lin_enabled'] <- 1 + result <- model_fn(params) + + ok(ut_cmp_equal( + as.vector(attr(result, "nll_random_dnorm_dnorm_log__dnorm")), + -dnorm(params$dnorm_log, params$dnorm_log_mean, params$dnorm_log_sigma, TRUE), + tolerance = 1e-7), "dnorm_log matches dnorm") + ok(ut_cmp_equal( + as.vector(attr(result, "nll_random_dnorm_dnorm_lin__dnorm")), + dnorm(params$dnorm_lin, params$dnorm_lin_mean, params$dnorm_lin_sigma, FALSE), + tolerance = 1e-7), "dnorm_lin matches dnorm") + ok(ut_cmp_equal( + as.vector(result), + sum(c( + -dnorm(params$dnorm_log, params$dnorm_log_mean, params$dnorm_log_sigma, TRUE), + dnorm(params$dnorm_lin, params$dnorm_lin_mean, params$dnorm_lin_sigma, FALSE), + 0)), + tolerance = 1e-7), "nll matches both (and has been included only once)") + + if (nzchar(Sys.getenv('G3_TEST_TMB'))) { + param_template <- attr(model_cpp, "parameter_template") + param_template$value <- params[param_template$switch] + # Reproduce model to include any unoptimised parameters + model_tmb <- g3_tmb_adfun(model_cpp, param_template, compile_flags = c("-O0", "-g")) + ok(ut_cmp_identical(names(model_tmb$env$last.par)[model_tmb$env$random], c( + 'dnorm_lin', + 'dnorm_log', + 'walk_step__1990__1', + 'walk_step__1991__1', + 'walk_step__1992__1', + 'walk_step__1993__1', + 'walk_step__1994__1', + 'walk_step__1990__2', + 'walk_step__1991__2', + 'walk_step__1992__2', + 'walk_step__1993__2', + 'walk_step__1994__2', + 'walk_step__1990__3', + 'walk_step__1991__3', + 'walk_step__1992__3', + 'walk_step__1993__3', + 'walk_step__1994__3', + 'walk_step__1990__4', + 'walk_step__1991__4', + 'walk_step__1992__4', + 'walk_step__1993__4', + 'walk_step__1994__4', + 'walk_year__1990', + 'walk_year__1991', + 'walk_year__1992', + 'walk_year__1993', + 'walk_year__1994', + NULL)), "env$random: TMB got expected random variables") + gadget3:::ut_tmb_r_compare(model_fn, model_tmb, param_template) + } else { + writeLines("# skip: not running TMB tests") + } + }) # g3l_random_dnorm ok - dnorm_log matches dnorm ok - dnorm_lin matches dnorm ok - nll matches both (and has been included only once) # skip: not running TMB tests > > ok_group('g3l_random_walk', { + params <- attr(model_fn, 'parameter_template') + params['walk_year_enabled'] <- 1 + params[grepl('walk_year\\.199', names(params))] <- runif(5, 1, 10) + params['walk_step_enabled'] <- 1 + params[grepl('walk_step\\.199', names(params))] <- runif(5 * 4, 1, 10) + result <- model_fn(params) + + # Calculate the sum of a random walk along values + sum_walk_dnorm <- function (vals, sigma, is_log) { + vals <- vals[order(names(vals))] # Sort by name, so 1991.1 is before 1991.2 + lead <- head(vals, -1) + lag <- tail(vals, -1) + sum(vapply( + seq_along(lead), + function (i) -dnorm(lead[[i]], lag[[i]], sigma, is_log), + numeric(1))) + } + + ok(ut_cmp_equal( + as.vector(attr(result, "nll_random_walk_walk_year__dnorm")), + sum_walk_dnorm(params[grepl('walk_year\\.199', names(params))], params$walk_year_sigma, TRUE), + tolerance = 1e-7), "nll_random_walk_walk_year__dnorm") + + ok(ut_cmp_equal( + as.vector(attr(result, "nll_random_walk_walk_step__dnorm")), + sum_walk_dnorm(params[grepl('walk_step\\.199', names(params))], params$walk_step_sigma, TRUE), + tolerance = 1e-7), "nll_random_walk_walk_step__dnorm") + + ok(ut_cmp_equal( + as.vector(result), + as.vector(sum( + attr(result, "nll_random_walk_walk_year__dnorm"), + attr(result, "nll_random_walk_walk_step__dnorm"), + 0)), + tolerance = 1e-7), "nll matches both") + + if (nzchar(Sys.getenv('G3_TEST_TMB'))) { + param_template <- attr(model_cpp, "parameter_template") + param_template$value <- params[param_template$switch] + # Reproduce model to include any unoptimised parameters + model_tmb <- g3_tmb_adfun(model_cpp, param_template, compile_flags = c("-O0", "-g")) + gadget3:::ut_tmb_r_compare(model_fn, model_tmb, param_template) + } else { + writeLines("# skip: not running TMB tests") + } + }) # g3l_random_walk ok - nll_random_walk_walk_year__dnorm ok - nll_random_walk_walk_step__dnorm ok - nll matches both # skip: not running TMB tests > > if (nzchar(Sys.getenv('G3_TEST_TMB'))) { + # An end-to-end test, too complex to be a vignette example + in_param <- g3_parameterized('par', by_year = TRUE, random = TRUE, value = 50) + out_stock <- g3_stock('output', 1) |> g3s_time(year = 1990:2000) + + simple_code <- g3_to_tmb(list( + g3a_time(1990, 2000), + gadget3:::g3_step(g3_formula( + quote( stock_iterate(out_stock, stock_ss(out_stock__val) <- force_type * in_param) ), + out_stock = out_stock, + # NB: We need to set an array + force_type = as.array(1), + out_stock__val = g3_stock_instance(out_stock, 0), + in_param = in_param )), + g3l_random_dnorm( + 'rdnorm_par', + param_f = in_param, + # These need to be Types, not (double), thus g3_formula() + mean_f = g3_formula(cur_year * m, m = 0.001), + sigma_f = g3_formula(s, s = 1) ), + gadget3:::g3a_report_var( + 'out_stock__val', + g3_stock_instance(out_stock, 0), + stock = out_stock, + out_prefix = NULL), + NULL)) + obj.fn <- g3_tmb_adfun(simple_code) + out <- suppressWarnings(optim(obj.fn$par, obj.fn$fn, obj.fn$gr, method = "BFGS", control = list(maxit = 10))) + ok(ut_cmp_equal( + as.vector(obj.fn$report()$output__val), + c(1.99, 1.991, 1.992, 1.993, 1.994, 1.995, 1.996, 1.997, 1.998, 1.999, 2), + filter = NULL), "output__val: Found mean for each year") + } > > proc.time() user system elapsed 0.54 0.07 0.62 # Looks like you passed all 6 tests.