fwildclusterboot::setBoottest_nthreads(1) test_that("test heteroskedastic boottest against fixest", { #' @srrstats {G5.4} **Correctness tests** *to test that statistical algorithms #' produce expected results to some fixed test data sets (potentially through #' comparisons using binding frameworks such as #' [RStata](https://github.com/lbraglia/RStata)).* Several correctness #' tests are implemented. First, it is tested if the non-bootstrapped #' t-statistics #' produced via boottest() *exactly* match those computed by the fixest package #' (see test_tstat_equivalence). Second, `fwildclusterboot` is heavily tested #' against `WildBootTests.jl` - see "test-r-vs-julia". Last, multiple R #' implementations of the WCB are tested against each other. set.seed(96578) dqrng::dqset.seed(9568) data1 <<- fwildclusterboot:::create_data( N = 1000, N_G1 = 1000, icc1 = 0.5, N_G2 = 10, icc2 = 0.01, numb_fe1 = 10, numb_fe2 = 10, seed = 2293 ) lm_fit <- lm(proposition_vote ~ treatment + ideology1 + log_income, data = data1 ) feols_fit <- fixest::feols( proposition_vote ~ treatment + ideology1 + log_income, data = data1 ) felm_fit <- lfe::felm(proposition_vote ~ treatment + ideology1 + log_income, data = data1 ) # Test 1: heteroskedadestic wild bootstrap set.seed(96578) dqrng::dqset.seed(9568) boot_lm <- boottest(lm_fit, param = "treatment", B = 999, ssc = boot_ssc(adj = FALSE, cluster.adj = FALSE), nthreads = 1, type = "webb" ) set.seed(96578) dqrng::dqset.seed(9568) boot_lm2 <- boottest(lm_fit, param = "treatment", B = 999, ssc = boot_ssc(adj = FALSE, cluster.adj = FALSE), nthreads = 1, type = "webb" ) set.seed(96578) dqrng::dqset.seed(9568) boot_feols <- boottest(feols_fit, param = "treatment", B = 9999, ssc = boot_ssc(adj = FALSE, cluster.adj = FALSE), nthreads = 1 ) set.seed(96578) dqrng::dqset.seed(9568) boot_felm <- boottest(felm_fit, param = "treatment", B = 9999, ssc = boot_ssc(adj = FALSE, cluster.adj = FALSE), nthreads = 1 ) # 2.155239 res <- broom::tidy( lmtest::coeftest( lm_fit, sandwich::vcovHC(lm_fit, type = "HC0") ) )[2, 4:5] expect_equal(res$statistic, boot_lm$t_stat) expect_equal(res$statistic, boot_feols$t_stat) expect_equal(res$statistic, boot_felm$t_stat) expect_equal(res$p.value, boot_lm$p_val, tolerance = 0.05) expect_equal(res$p.value, boot_feols$p_val, tolerance = 0.05) expect_equal(res$p.value, boot_felm$p_val, tolerance = 0.05) # HC1 boot_lm <- boottest(lm_fit, param = "treatment", B = 9999, ssc = boot_ssc(adj = TRUE, cluster.adj = FALSE), nthreads = 1 ) boot_feols <- boottest(feols_fit, param = "treatment", B = 9999, ssc = boot_ssc(adj = TRUE, cluster.adj = FALSE), nthreads = 1 ) boot_felm <- boottest(felm_fit, param = "treatment", B = 9999, ssc = boot_ssc(adj = TRUE, cluster.adj = FALSE), nthreads = 1 ) res <- broom::tidy( lmtest::coeftest( lm_fit, sandwich::vcovHC(lm_fit, type = "HC1") ) )[2, 4:5] k <- length(coef(lm_fit)) N <- nobs(lm_fit) # HC1 in sandwich : t / sqrt(n / (n -k)) # in fwildclusterboot: t / sqrt((n-1) / n-k) ssc_corr <- (N - 1) / N expect_equal(res$statistic / sqrt(ssc_corr), boot_lm$t_stat) expect_equal(res$statistic / sqrt(ssc_corr), boot_feols$t_stat) expect_equal(res$statistic / sqrt(ssc_corr), boot_felm$t_stat) expect_equal(res$p.value, pval(boot_lm), tolerance = 0.05) expect_equal(res$p.value, pval(boot_feols), tolerance = 0.05) expect_equal(res$p.value, pval(boot_felm), tolerance = 0.05) # test oneway clustering boot_lm1 <- boottest(feols_fit, param = "treatment", clustid = "group_id1", B = 2999, engine = "R-lean", nthreads = 1, ssc = boot_ssc( adj = FALSE, cluster.adj = FALSE ) ) boot_lm2 <- boottest(lm_fit, param = "treatment", clustid = "group_id1", B = 2999, engine = "R", nthreads = 1, ssc = boot_ssc( adj = FALSE, cluster.adj = FALSE ) ) # pracma::toc() expect_equal(pval(boot_lm1), pval(boot_lm2), tolerance = 0.05) expect_equal(teststat(boot_lm1), teststat(boot_lm2)) boot_lm1 <- boottest(feols_fit, param = "treatment", clustid = "group_id1", B = 9999, engine = "R-lean", nthreads = 1 ) boot_lm2 <- boottest(feols_fit, param = "treatment", clustid = "group_id1", B = 9999, engine = "R", nthreads = 1 ) expect_equal(pval(boot_lm1), pval(boot_lm2), tolerance = 0.05) expect_equal(teststat(boot_lm1), teststat(boot_lm2)) # test for non-standard hypotheses }) test_that("heteroskedastic multi-param tests", { N <- 2000 seed <- 7896 data1 <<- fwildclusterboot:::create_data( N = N, N_G1 = 8, icc1 = 0.5, N_G2 = 20, icc2 = 0.2, numb_fe1 = 10, numb_fe2 = 10, seed = seed, weights = 1:N / N ) lm_fit <- lm(proposition_vote ~ treatment + log_income, data = data1 ) boot <- suppressWarnings( boottest( lm_fit, B = 999, param = c("treatment", "log_income"), R = c(-0.1, 0.1), r = -0.1, conf_int = FALSE, ssc = boot_ssc(adj = FALSE, cluster.adj = FALSE) ) ) X <- model.matrix(lm_fit) u <- resid(lm_fit) y <- model.response(model.frame(lm_fit)) Omega <- diag(tcrossprod(u)) tXX <- solve(crossprod(X)) N <- nobs(lm_fit) vcov <- tXX %*% (t(X) %*% diag(Omega) %*% X) %*% tXX R <- c(0, -0.1, 0.1) r <- -0.1 beta <- coef(lm_fit) t <- (R %*% beta - r) / sqrt(t(R) %*% vcov %*% R) expect_equal(c(t), teststat(boot)) }) test_that("heteroskedastic 11 vs 21 vs 31", { lm_fit <- lm( proposition_vote ~ treatment + ideology1 + log_income, data = fwildclusterboot:::create_data( N = 1000, N_G1 = 20, icc1 = 0.81, N_G2 = 10, icc2 = 0.01, numb_fe1 = 10, numb_fe2 = 10, seed = 12412 ) ) fit11 <- boottest( lm_fit, param = "treatment", bootstrap_type = "11", B = 9999, ) fit12 <- boottest( lm_fit, param = "treatment", bootstrap_type = "21", B = 9999, ) fit13 <- boottest( lm_fit, param = "treatment", bootstrap_type = "31", B = 9999, ) expect_equal(teststat(fit11), teststat(fit12)) expect_equal(teststat(fit12), teststat(fit13)) expect_equal(pval(fit11), pval(fit12), tolerance = 0.02) expect_equal(pval(fit12), pval(fit13), tolerance = 0.02) })