R Under development (unstable) (2025-11-06 r88990 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > library(fuzzyRankTests) > > options(digits=5) # avoid rounding differences > > x <- c(-3, -2, -2, 0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 5, 6, 7) > > fuzzy.signrank.test(x) Wilcoxon signed rank test data: x alternative hypothesis: true mu is not equal to 0 fuzzy P-value has continuous, piecewise linear CDF with knots and values knots values 0.01309 0.00000 0.01550 0.01042 0.01825 0.04167 0.02139 0.09375 0.02496 0.16667 0.02899 0.26042 0.03354 0.37500 0.03864 0.50000 0.04431 0.62500 0.05066 0.73958 0.05768 0.83333 0.06540 0.90625 0.07391 0.95833 0.08325 0.98958 0.09344 1.00000 > > wilcox.test(x, exact = FALSE) Wilcoxon signed rank test with continuity correction data: x V = 66.5, p-value = 0.034 alternative hypothesis: true location is not equal to 0 > > fuzzy.signrank.test(x, alt = "less") Wilcoxon signed rank test data: x alternative hypothesis: true mu is less than 0 fuzzy P-value has continuous, piecewise linear CDF with knots and values knots values 0.9533 0.00000 0.9584 0.01042 0.9630 0.04167 0.9673 0.09375 0.9712 0.16667 0.9747 0.26042 0.9778 0.37500 0.9807 0.50000 0.9832 0.62500 0.9855 0.73958 0.9875 0.83333 0.9893 0.90625 0.9909 0.95833 0.9922 0.98958 0.9935 1.00000 > > wilcox.test(x, alt = "less", exact = FALSE) Wilcoxon signed rank test with continuity correction data: x V = 66.5, p-value = 0.99 alternative hypothesis: true location is less than 0 > > fuzzy.signrank.test(x, alt = "great") Wilcoxon signed rank test data: x alternative hypothesis: true mu is greater than 0 fuzzy P-value has continuous, piecewise linear CDF with knots and values knots values 0.006546 0.00000 0.007751 0.01042 0.009125 0.04167 0.010696 0.09375 0.012482 0.16667 0.014496 0.26042 0.016769 0.37500 0.019318 0.50000 0.022156 0.62500 0.025330 0.73958 0.028839 0.83333 0.032700 0.90625 0.036957 0.95833 0.041626 0.98958 0.046722 1.00000 > > wilcox.test(x, alt = "great", exact = FALSE) Wilcoxon signed rank test with continuity correction data: x V = 66.5, p-value = 0.017 alternative hypothesis: true location is greater than 0 > > fuzzy.signrank.ci(x) Wilcoxon signed rank test data: x 95 percent confidence interval: Fuzzy confidence interval: set value (-Inf, 0) 0.0000 {0} 0.2723 (0, 3.5) 1.0000 {3.5} 0.7031 (3.5, Inf) 0.0000 > > wilcox.test(x, conf.int = TRUE, exact = FALSE) Wilcoxon signed rank test with continuity correction data: x V = 66.5, p-value = 0.034 alternative hypothesis: true location is not equal to 0 95 percent confidence interval: 4.3784e-05 3.5000e+00 sample estimates: (pseudo)median 1.9999 > > fuzzy.signrank.ci(x, alt = "less") Wilcoxon signed rank test data: x 95 percent confidence interval: Fuzzy confidence interval: set value (-Inf, 3) 1.000000 {3} 0.992644 (3, 3.5) 0.411507 {3.5} 0.005144 (3.5, Inf) 0.000000 > > wilcox.test(x, conf.int = TRUE, alt = "less", exact = FALSE) Wilcoxon signed rank test with continuity correction data: x V = 66.5, p-value = 0.99 alternative hypothesis: true location is less than 0 95 percent confidence interval: -Inf 3.5 sample estimates: (pseudo)median 1.9999 > > fuzzy.signrank.ci(x, alt = "great") Wilcoxon signed rank test data: x 95 percent confidence interval: Fuzzy confidence interval: set value (-Inf, 0.5) 0.0000 {0.5} 0.9539 (0.5, Inf) 1.0000 > > wilcox.test(x, conf.int = TRUE, alt = "great", exact = FALSE) Wilcoxon signed rank test with continuity correction data: x V = 66.5, p-value = 0.017 alternative hypothesis: true location is greater than 0 95 percent confidence interval: 0.49996 Inf sample estimates: (pseudo)median 1.9999 > > > proc.time() user system elapsed 0.18 0.03 0.20