# Copyright 2016 Steven E. Pav. All Rights Reserved. # Author: Steven E. Pav # This file is part of fromo. # # fromo is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # fromo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with fromo. If not, see . # env var: # nb: # see also: # todo: # changelog: # # Created: 2016.03.25 # Copyright: Steven E. Pav, 2016-2019 # Author: Steven E. Pav # Comments: Steven E. Pav # helpers#FOLDUP set.char.seed <- function(str) { set.seed(as.integer(charToRaw(str))) } #UNFOLD context("running_foo run without error") test_that("running sd, skew, kurt run without error",{#FOLDUP skip_on_cran() set.char.seed("7097f6ae-eac7-4e3a-b2cc-e9d4a01d43f7") x <- rnorm(100) y <- as.integer(x) z <- as.logical(y) q <- c('a','b','c') ptiles <- c(0.1,0.25,0.5,0.75,0.9) for (thingy in list(x,y,z)) { for (window in c(50,Inf)) { for (na_rm in c(FALSE,TRUE)) { expect_error(running_sum(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_mean(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_sd(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_skew(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_kurt(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_sd3(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_skew4(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_kurt5(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) for (mol in c(1L,2L,5L)) { expect_error(running_cent_moments(thingy,max_order=mol,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_cent_moments(thingy,max_order=mol,window=window,restart_period=50L,na_rm=na_rm,max_order_only=TRUE),NA) } expect_error(running_std_moments(thingy,max_order=5L,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_cumulants(thingy,max_order=5L,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_apx_quantiles(thingy,p=ptiles,max_order=5L,window=window,restart_period=50L,na_rm=na_rm),NA) } } } for (thingy in list(x,y,z)) { for (min_df in c(2L,10L)) { expect_error(running_mean(thingy,window=window,min_df=min_df),NA) expect_error(running_sd(thingy,window=window,min_df=min_df),NA) expect_error(running_skew(thingy,window=window,min_df=min_df),NA) expect_error(running_kurt(thingy,window=window,min_df=min_df),NA) expect_error(running_sd3(thingy,window=window,min_df=min_df),NA) expect_error(running_skew4(thingy,window=window,min_df=min_df),NA) expect_error(running_kurt5(thingy,window=window,min_df=min_df),NA) for (mol in c(1L,2L,5L)) { expect_error(running_cent_moments(thingy,max_order=mol,window=window,min_df=min_df),NA) expect_error(running_cent_moments(thingy,max_order=mol,window=window,min_df=min_df,max_order_only=TRUE),NA) } expect_error(running_std_moments(thingy,max_order=5L,window=window,min_df=min_df),NA) expect_error(running_cumulants(thingy,max_order=5L,window=window,min_df=min_df),NA) expect_error(running_apx_quantiles(thingy,p=ptiles,max_order=5L,window=window,min_df=min_df),NA) } } # will not work on character input expect_error(running_sum(q)) expect_error(running_mean(q)) expect_error(running_sd(q)) expect_error(running_skew(q)) expect_error(running_kurt(q)) expect_error(running_sd3(q)) expect_error(running_skew4(q)) expect_error(running_kurt5(q)) expect_error(running_cent_moments(q,max_order=5L)) expect_error(running_cent_moments(q,max_order=5L,max_order_only=TRUE)) expect_error(running_std_moments(q,max_order=5L)) expect_error(running_cumulants(q,max_order=5L)) expect_error(running_apx_quantiles(q,p=ptiles,max_order=5L)) # this crashes R when I run it: #expect_error(running_apx_quantiles(x,p=q,max_order=5L)) expect_error(running_apx_median(q,p=ptiles,max_order=5L)) })#UNFOLD context("running_foo weighted OK") test_that("running foo and weights",{#FOLDUP skip_on_cran() set.char.seed("7097f6ae-eac7-4e3a-b2cc-e9d4a01d43f7") nel <- 20 xna <- rnorm(nel) xna[xna < -0.5] <- NA xall <- list(rnorm(nel), xna, as.integer(rnorm(nel,sd=100))) wna <- runif(nel,min=1,max=3) wna[wna < 1.5] <- NA wall <- list(rep(1.0,nel), runif(nel,min=0.9,max=3.5), wna, NULL) ptiles <- c(0.1,0.25,0.5,0.75,0.9) for (thingy in xall) { for (wts in wall) { for (window in c(5,21,Inf,NULL)) { for (na_rm in c(FALSE,TRUE)) { expect_error(running_sum(thingy,wts=wts,window=window,restart_period=2L,na_rm=na_rm),NA) expect_error(running_sum(thingy,wts=wts,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_mean(thingy,wts=wts,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_sd(thingy,wts=wts,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_skew(thingy,wts=wts,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_kurt(thingy,wts=wts,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_sd3(thingy,wts=wts,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_skew4(thingy,wts=wts,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_kurt5(thingy,wts=wts,window=window,restart_period=50L,na_rm=na_rm),NA) for (mol in c(1L,2L,5L)) { expect_error(running_cent_moments(thingy,wts=wts,max_order=mol,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_cent_moments(thingy,wts=wts,max_order=mol,window=window,restart_period=50L,na_rm=na_rm,max_order_only=TRUE),NA) } expect_error(running_std_moments(thingy,wts=wts,max_order=5L,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_cumulants(thingy,wts=wts,max_order=5L,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_apx_quantiles(thingy,wts=wts,p=ptiles,max_order=5L,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_apx_median(thingy,wts=wts,max_order=5L,window=window,restart_period=50L,na_rm=na_rm),NA) #expect_error(running_centered(thingy,wts=wts,window=window,restart_period=50L,na_rm=na_rm),NA) for (lookahead in c(0L,8L)) { expect_error(running_centered(thingy,wts=wts,window=window,restart_period=50L,lookahead=lookahead,na_rm=na_rm),NA) expect_error(running_scaled(thingy,wts=wts,window=window,restart_period=50L,lookahead=lookahead,na_rm=na_rm),NA) expect_error(running_zscored(thingy,wts=wts,window=window,restart_period=50L,lookahead=lookahead,na_rm=na_rm),NA) } expect_error(running_sharpe(thingy,wts=wts,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_sharpe(thingy,wts=wts,window=window,restart_period=50L,na_rm=na_rm,compute_se=TRUE),NA) expect_error(running_tstat(thingy,wts=wts,window=window,restart_period=50L,na_rm=na_rm),NA) } } } } })#UNFOLD context("running_sum every way") test_that("running sum",{#FOLDUP skip_on_cran() set.char.seed("20c032c9-deb2-4000-9d73-b7d8395b67b2") nel <- 20 xna <- rnorm(nel) xna[xna < -0.5] <- NA xall <- list(rnorm(nel), xna, as.integer(rnorm(nel,sd=100))) wna <- runif(nel,min=1,max=3) wna[wna < 1.5] <- NA wall <- list(rep(1.0,nel), runif(nel,min=0.9,max=3.5), wna, as.integer(ceiling(runif(nel,min=2,max=100))), as.logical(ceiling(pmax(0,rnorm(nel)))), NULL) for (thingy in xall) { for (wts in wall) { for (window in c(5,21,Inf,NULL)) { for (na_rm in c(FALSE,TRUE)) { for (rp in c(1L,40L)) { expect_error(running_sum(thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) } } } } } })#UNFOLD test_that("constant input",{#FOLDUP x <- rep(1,8) for (maxord in c(2,4,5)) { expect_error(yy <- running_cent_moments(x,window=6,max_order=maxord),NA) expect_true(!any(is.na(yy[nrow(yy),,drop=TRUE]) )) } expect_error(y3 <- running_sd3(x,window=5),NA) expect_true(!is.na(y3[nrow(y3),1,drop=TRUE])) expect_error(y4 <- running_skew4(x,window=5),NA) expect_true(!is.na(y4[nrow(y4),2,drop=TRUE])) expect_error(y5 <- running_kurt5(x,window=5),NA) expect_true(!is.na(y5[nrow(y5),3,drop=TRUE])) # if skewness is divided by stdev, there will be 0/0 condition here, # so drop these # expect_error(y4 <- running_skew4(x,window=5),NA) # expect_true(!any(is.na(y4[nrow(y4),,drop=TRUE]) )) # expect_error(y5 <- running_kurt5(x,window=5),NA) # expect_true(!any(is.na(y5[nrow(y5),,drop=TRUE]) )) })#UNFOLD context("running foo input params") test_that("window as integer or double",{#FOLDUP skip_on_cran() set.char.seed("da774aca-bbde-4350-87b2-d21ed0c84124") nel <- 40 thingy <- rnorm(nel) iwin <- 50L dwin <- as.numeric(iwin) charwin <- 'window' expect_error(rd <- running_sum(thingy,window=dwin),NA) expect_error(ri <- running_sum(thingy,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(running_sum(thingy,window=charwin)) expect_error(rd <- running_mean(thingy,window=dwin),NA) expect_error(ri <- running_mean(thingy,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(running_mean(thingy,window=charwin)) expect_error(rd <- running_sd(thingy,window=dwin),NA) expect_error(ri <- running_sd(thingy,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(running_sd(thingy,window=charwin)) expect_error(rd <- running_skew(thingy,window=dwin),NA) expect_error(ri <- running_skew(thingy,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(running_skew(thingy,window=charwin)) expect_error(rd <- running_kurt(thingy,window=dwin),NA) expect_error(ri <- running_kurt(thingy,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(running_kurt(thingy,window=charwin)) expect_error(rd <- running_sd3(thingy,window=dwin),NA) expect_error(ri <- running_sd3(thingy,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(running_sd3(thingy,window=charwin)) expect_error(rd <- running_skew4(thingy,window=dwin),NA) expect_error(ri <- running_skew4(thingy,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(running_skew4(thingy,window=charwin)) expect_error(rd <- running_kurt5(thingy,window=dwin),NA) expect_error(ri <- running_kurt5(thingy,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(running_kurt5(thingy,window=charwin)) })#UNFOLD test_that("bad input",{#FOLDUP skip_on_cran() set.char.seed("e6bc7b67-8ba5-4c48-aeed-180a27d3303c") nel <- 10 thingy <- rnorm(nel) # for some reason, these now cause R to abort? auuggggh! expect_error(rd <- running_sum(thingy,window='bad idea')) expect_error(rd <- running_mean(thingy,window=5,restart_period='dumb')) expect_error(rd <- running_mean(thingy,window=5,min_df='dumb')) expect_error(rd <- running_mean(thingy,window=5,na_rm='dumb')) expect_error(rd <- running_sd3(thingy,window=5,used_df='dumb')) expect_error(rd <- running_sd3(thingy,window=5,check_wts='dumb')) expect_error(rd <- running_sd3(thingy,window=5,normalize_wts='dumb')) })#UNFOLD context("running_foo check heywood cases") test_that("hit heywood branch",{#FOLDUP skip_on_cran() # not sure what I had planned here, and how it tests for heywoods. ptiles <- c(0.1,0.25,0.5,0.75,0.9) set.char.seed("3d318f1d-9921-4a20-84fc-c5ffc722d52c") xvals <- list(rnorm(1e5,mean=1e10)) x <- rnorm(1e4) x[x < 1.0] <- NA xvals[[length(xvals)+1]] <- x x <- rnorm(1e4) x[x < 1.5] <- NA xvals[[length(xvals)+1]] <- x for (x in xvals) { window <- 500L restart_period <- 100000L na_rm <- TRUE expect_error(y <- running_sd3(x,window=window,restart_period=restart_period,na_rm=na_rm),NA) ys <- y[window:nrow(y),1] expect_false(any(ys < 0 | is.na(ys))) expect_error(y <- running_skew4(x,window=window,restart_period=restart_period,na_rm=na_rm),NA) ys <- y[window:nrow(y),2] expect_false(any(ys < 0 | is.na(ys))) expect_error(y <- running_kurt5(x,window=window,restart_period=restart_period,na_rm=na_rm),NA) ys <- 3 + y[window:nrow(y),1] expect_false(any(ys < 0 | is.na(ys))) ys <- y[window:nrow(y),3] expect_false(any(ys < 0 | is.na(ys))) # not sure where I would expect Heywoods in here. # expect_error(y <- running_cent_moments(x,max_order=5L,window=window,restart_period=restart_period,na_rm=na_rm),NA) # expect_error(running_cent_moments(x,max_order=5L,window=window,restart_period=restart_period,max_order_only=TRUE,na_rm=na_rm),NA) # expect_error(running_std_moments(x,max_order=5L,window=window,restart_period=restart_period,na_rm=na_rm),NA) # expect_error(running_cumulants(x,max_order=5L,window=window,restart_period=restart_period,na_rm=na_rm),NA) # expect_error(running_apx_quantiles(x,p=ptiles,max_order=5L,window=window,restart_period=restart_period,na_rm=na_rm),NA) # expect_error(running_apx_median(x,max_order=5L,window=window,restart_period=restart_period,na_rm=na_rm),NA) } })#UNFOLD test_that("hit corner cases",{#FOLDUP # created with the intention of causing Heywoods epsi <- 1e-16 xx <- c(1,1+epsi,epsi,1,1,1) expect_error(y <- fromo::running_sd3(xx,3,check_negative_moments=FALSE),NA) expect_true(is.nan(y[nrow(y),1])) expect_error(y <- fromo::running_sd3(xx,3,check_negative_moments=TRUE),NA) expect_false(is.nan(y[nrow(y),1])) })#UNFOLD context("running_foo: NA restart") test_that("NA restart period?",{#FOLDUP skip_on_cran() ptiles <- c(0.1,0.25,0.5,0.75,0.9) set.char.seed("3d318f1d-9921-4a20-84fc-c5ffc722d52c") xvals <- list(rnorm(1e2,mean=1e10)) x <- rnorm(1e3) x[x < 1.0] <- NA xvals[[length(xvals)+1]] <- x x <- rnorm(1e3) x[x < 1.5] <- NA xvals[[length(xvals)+1]] <- x for (x in xvals) { window <- 50L restart_period <- NA_integer_ na_rm <- TRUE expect_error(running_sum(x,window=window,restart_period=restart_period,na_rm=na_rm),NA) expect_error(running_mean(x,window=window,restart_period=restart_period,na_rm=na_rm),NA) expect_error(running_sd3(x,window=window,restart_period=restart_period,na_rm=na_rm),NA) expect_error(running_skew4(x,window=window,restart_period=restart_period,na_rm=na_rm),NA) expect_error(running_kurt5(x,window=window,restart_period=restart_period,na_rm=na_rm),NA) expect_error(running_cent_moments(x,max_order=5L,window=window,restart_period=restart_period,na_rm=na_rm),NA) for (mol in c(1L,2L,5L)) { expect_error(running_cent_moments(x,max_order=mol,window=window,restart_period=restart_period,max_order_only=TRUE,na_rm=na_rm),NA) } expect_error(running_std_moments(x,max_order=5L,window=window,restart_period=restart_period,na_rm=na_rm),NA) expect_error(running_cumulants(x,max_order=5L,window=window,restart_period=restart_period,na_rm=na_rm),NA) expect_error(running_apx_quantiles(x,p=ptiles,max_order=5L,window=window,restart_period=restart_period,na_rm=na_rm),NA) expect_error(running_apx_median(x,max_order=5L,window=window,restart_period=restart_period,na_rm=na_rm),NA) } })#UNFOLD context("running foo NANANANANA") test_that("nananana",{#FOLDUP skip_on_cran() x <- rep(NA,20) y <- as.integer(x) z <- as.logical(y) q <- c('a','b','c') restart_period <- NA_integer_ for (thingy in list(x,y,z)) { for (wts in list(NULL,rep(NA_real_,length(thingy)))) { for (window in c(15)) { for (na_rm in c(FALSE,TRUE)) { expect_error(running_sum(thingy,window=window,wts=wts,restart_period=restart_period,na_rm=na_rm),NA) expect_error(running_mean(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm),NA) for (nw in c(FALSE,TRUE)) { expect_error(running_sd(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm,normalize_wts=nw),NA) expect_error(running_skew(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm,normalize_wts=nw),NA) expect_error(running_kurt(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm,normalize_wts=nw),NA) expect_error(running_sd3(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm,normalize_wts=nw),NA) expect_error(running_skew4(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm,normalize_wts=nw),NA) expect_error(running_kurt5(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm,normalize_wts=nw),NA) expect_error(running_cent_moments(thingy,max_order=5L,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm,normalize_wts=nw),NA) expect_error(running_centered(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm,normalize_wts=nw),NA) expect_error(running_scaled(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm,normalize_wts=nw),NA) expect_error(running_zscored(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm,normalize_wts=nw),NA) expect_error(running_sharpe(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm,normalize_wts=nw),NA) expect_error(running_sharpe(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,compute_se=TRUE,na_rm=na_rm,normalize_wts=nw),NA) expect_error(running_tstat(thingy,window=window,min_df=10L,wts=wts,restart_period=restart_period,na_rm=na_rm,normalize_wts=nw),NA) } } } } } })#UNFOLD context("running adjustments run") test_that("running adjustments",{#FOLDUP skip_on_cran() set.char.seed("e36291f6-70e0-4412-9c50-bc46b6ab8639") x <- rnorm(100) y <- as.integer(x) z <- as.logical(y) q <- c('a','b','c') for (thingy in list(x,y,z)) { for (window in c(50,Inf)) { for (na_rm in c(FALSE,TRUE)) { expect_error(running_centered(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_scaled(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_zscored(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_sharpe(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_sharpe(thingy,window=window,restart_period=50L,na_rm=na_rm,compute_se=TRUE),NA) expect_error(running_tstat(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) } } } window <- 10L for (thingy in list(x,y,z)) { for (na_rm in c(FALSE,TRUE)) { expect_error(running_centered(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_scaled(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_zscored(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_sharpe(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(running_sharpe(thingy,window=window,restart_period=50L,na_rm=na_rm,compute_se=TRUE),NA) expect_error(running_tstat(thingy,window=window,restart_period=50L,na_rm=na_rm),NA) } } window <- 10L for (thingy in list(x,y,z)) { for (na_rm in c(FALSE,TRUE)) { for (lookahead in c(0,-5,10)) { expect_error(running_centered(thingy,window=window,restart_period=50L,lookahead=lookahead,na_rm=na_rm),NA) expect_error(running_scaled(thingy,window=window,restart_period=50L,lookahead=lookahead,na_rm=na_rm),NA) expect_error(running_zscored(thingy,window=window,restart_period=50L,lookahead=lookahead,na_rm=na_rm),NA) } } } for (thingy in list(x,y,z)) { for (min_df in c(2L,10L)) { expect_error(running_centered(thingy,window=window,min_df=min_df),NA) expect_error(running_scaled(thingy,window=window,min_df=min_df),NA) expect_error(running_zscored(thingy,window=window,min_df=min_df),NA) expect_error(running_sharpe(thingy,window=window,min_df=min_df),NA) expect_error(running_sharpe(thingy,window=window,min_df=min_df,compute_se=TRUE),NA) expect_error(running_tstat(thingy,window=window,min_df=min_df),NA) } } expect_error(running_centered(q)) expect_error(running_scaled(q)) expect_error(running_zscored(q)) expect_error(running_sharpe(q)) expect_error(running_sharpe(q,compute_se=TRUE)) expect_error(running_tstat(q)) #expect_error(running_tstat(x,window='FOO')) #expect_error(running_tstat(x,window=-20L)) #expect_error(running_tstat(x,window=20L,restart_period='FOO')) })#UNFOLD context("running x y code") test_that("runs without error",{#FOLDUP skip_on_cran() set.char.seed("c13a49ac-14e9-462b-b81e-d3a5fc3be491") nel <- 20 xna <- rnorm(nel) xna[xna < -0.5] <- NA xall <- list(rnorm(nel), xna, as.integer(rnorm(nel,sd=100))) wna <- runif(nel,min=1,max=3) wna[wna < 1.5] <- NA wall <- list(rep(1.0,nel), runif(nel,min=0.9,max=3.5), wna, as.integer(ceiling(runif(nel,min=2,max=100))), as.logical(ceiling(pmax(0,rnorm(nel)))), NULL) for (x_thingy in xall) { y_thingy <- x_thingy + 1 for (wts in wall) { for (window in c(5,21,Inf,NULL)) { for (na_rm in c(FALSE,TRUE)) { for (rp in c(1L,40L)) { expect_error(running_correlation(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(running_covariance(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(running_covariance_3(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(running_regression_slope(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(running_regression_intercept(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(running_regression_fit(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(running_regression_diagnostics(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) } } } } } })#UNFOLD test_that("covariance correctness",{#FOLDUP skip_on_cran() set.char.seed("b81052f6-d7a5-4f3f-95cf-bc8d0030fcf8") window <- 30 maxplus <- 50 nel <- window + maxplus xvec <- rnorm(nel) beta_0 <- 0.33 beta_1 <- 5 sigma <- 0.5 yvec <- beta_0 + beta_1 * xvec + rnorm(length(xvec),sd=sigma) expect_error(rho <- running_correlation(xvec,yvec,window=window),NA) expect_equal(rho[window], cor(xvec[1:window],yvec[1:window]), tolerance=1e-12) expect_equal(rho[1+window], cor(xvec[2:(1+window)],yvec[2:(1+window)]), tolerance=1e-12) expect_error(rho <- running_covariance(xvec,yvec,window=window,used_df=1),NA) expect_equal(rho[window], cov(xvec[1:window],yvec[1:window]), tolerance=1e-12) expect_equal(rho[1+window], cov(xvec[2:(1+window)],yvec[2:(1+window)]), tolerance=1e-12) expect_error(beta_1 <- running_regression_slope(xvec,yvec,window=window),NA) expect_error(beta_0 <- running_regression_intercept(xvec,yvec,window=window),NA) mod0 <- lm(yvec[1:window] ~ xvec[1:window]) ses <- sqrt(diag(vcov(mod0))) expect_equal(beta_0[window], coefficients(mod0)[[1]], tolerance=1e-12) expect_equal(beta_1[window], coefficients(mod0)[[2]], tolerance=1e-12) expect_error(beta_ff <- running_regression_fit(xvec,yvec,window=window),NA) expect_equal(beta_ff[,1,drop=FALSE], beta_0, tolerance=1e-12) expect_equal(beta_ff[,2,drop=FALSE], beta_1, tolerance=1e-12) expect_error(beta_dd <- running_regression_diagnostics(xvec,yvec,window=window),NA) expect_equal(beta_dd[,1,drop=FALSE], beta_0, tolerance=1e-12) expect_equal(beta_dd[,2,drop=FALSE], beta_1, tolerance=1e-12) # also compare against diag(vcov(mod0)) expect_equal(beta_dd[window,3], summary(mod0)$sigma, tolerance=1e-12) expect_equal(beta_dd[window,4], as.numeric(ses[1]), tolerance=1e-12) expect_equal(beta_dd[window,5], as.numeric(ses[2]), tolerance=1e-12) # and a little bit forward for (offs in c(5, maxplus - 1)) { mod1 <- lm(yvec[offs + (1:window)] ~ xvec[offs + (1:window)]) ses <- sqrt(diag(vcov(mod1))) expect_equal(beta_0[offs+window], coefficients(mod1)[[1]], tolerance=1e-12) expect_equal(beta_1[offs+window], coefficients(mod1)[[2]], tolerance=1e-12) expect_equal(beta_dd[offs+window,3], summary(mod1)$sigma, tolerance=1e-12) expect_equal(beta_dd[offs+window,4], as.numeric(ses[1]), tolerance=1e-12) expect_equal(beta_dd[offs+window,5], as.numeric(ses[2]), tolerance=1e-12) } })#UNFOLD test_that("covariance weighting correctness",{#FOLDUP skip_on_cran() set.char.seed("f3d1652c-2d83-4670-998b-f96d18d18374") window <- 50 nel <- window xvec <- rnorm(nel) beta_0 <- 0.33 beta_1 <- 5 sigma <- 0.5 yvec <- beta_0 + beta_1 * xvec + rnorm(length(xvec),sd=sigma) wts <- sample(c(1,2,3),nel,replace=TRUE) expect_error(rho <- running_correlation(xvec,yvec,wts=wts,window=window),NA) bigx <- rep(xvec,wts) bigy <- rep(yvec,wts) expect_error(rho2 <- running_correlation(bigx,bigy,window=length(bigx)),NA) expect_equal(rho[window],rho2[length(rho2)], tolerance=1e-12) expect_error(rho <- running_covariance(xvec,yvec,wts=wts,window=window,normalize_wts=FALSE,used_df=1),NA) expect_error(rho2 <- running_covariance(bigx,bigy,window=length(bigx),used_df=1),NA) expect_equal(rho[window],rho2[length(rho2)], tolerance=1e-12) expect_error(beta_0 <- running_regression_intercept(xvec,yvec,wts=wts,window=window),NA) expect_error(beta_1 <- running_regression_slope(xvec,yvec,wts=wts,window=window),NA) expect_error(beta_02 <- running_regression_intercept(bigx,bigy,window=length(bigx)),NA) expect_error(beta_12 <- running_regression_slope(bigx,bigy,window=length(bigx)),NA) expect_equal(beta_0[window],beta_02[length(bigx)], tolerance=1e-12) expect_equal(beta_1[window],beta_12[length(bigx)], tolerance=1e-12) expect_error(beta_dd <- running_regression_diagnostics(xvec,yvec,wts=wts,window=window,normalize_wts=FALSE),NA) expect_error(beta_dd2 <- running_regression_diagnostics(bigx,bigy,window=length(bigx)),NA) expect_equal(beta_dd[window,,drop=TRUE],beta_dd2[length(bigx),,drop=TRUE], tolerance=1e-12) })#UNFOLD #for vim modeline: (do not edit) # vim:ts=2:sw=2:tw=79:fdm=marker:fmr=FOLDUP,UNFOLD:cms=#%s:syn=r:ft=r:ai:si:cin:nu:fo=croql:cino=p0t0c5(0: