# Copyright 2016 Steven E. Pav. All Rights Reserved. # Author: Steven E. Pav # This file is part of fromo. # # fromo is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # fromo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with fromo. If not, see . # env var: # nb: # see also: # todo: # changelog: # # Created: 2019.01.15 # Copyright: Steven E. Pav, 2016-2019 # Author: Steven E. Pav # Comments: Steven E. Pav # helpers#FOLDUP set.char.seed <- function(str) { set.seed(as.integer(charToRaw(str))) } #UNFOLD # code runs at all context("code runs: t_running_sd etc") test_that("t_running sd, skew, kurt run without error",{#FOLDUP skip_on_cran() set.char.seed("1cfb2b84-7eae-42f6-90ad-2552e74a5ad0") x <- rnorm(100) times <- seq_along(x) y <- as.integer(x) z <- as.logical(y) q <- c('a','b','c') ptiles <- c(0.1,0.25,0.5,0.75,0.9) for (thingy in list(x,y,z)) { for (window in c(50,Inf)) { for (na_rm in c(FALSE,TRUE)) { expect_error(t_running_sum(thingy,time=times,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(t_running_mean(thingy,time=times,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(t_running_sd(thingy,time=times,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(t_running_skew(thingy,time=times,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(t_running_kurt(thingy,time=times,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(t_running_sd3(thingy,time=times,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(t_running_skew4(thingy,time=times,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(t_running_kurt5(thingy,time=times,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(t_running_cent_moments(thingy,time=times,max_order=5L,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(t_running_cent_moments(thingy,time=times,max_order=5L,window=window,restart_period=50L,na_rm=na_rm,max_order_only=TRUE),NA) expect_error(t_running_std_moments(thingy,time=times,max_order=5L,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(t_running_cumulants(thingy,time=times,max_order=5L,window=window,restart_period=50L,na_rm=na_rm),NA) expect_error(t_running_apx_quantiles(thingy,time=times,p=ptiles,max_order=5L,window=window,restart_period=50L,na_rm=na_rm),NA) } } } for (thingy in list(x,y,z)) { for (min_df in c(2L,10L)) { expect_error(t_running_sum(thingy,time=times,window=window,min_df=min_df),NA) expect_error(t_running_mean(thingy,time=times,window=window,min_df=min_df),NA) expect_error(t_running_sd(thingy,time=times,window=window,min_df=min_df),NA) expect_error(t_running_skew(thingy,time=times,window=window,min_df=min_df),NA) expect_error(t_running_kurt(thingy,time=times,window=window,min_df=min_df),NA) expect_error(t_running_sd3(thingy,time=times,window=window,min_df=min_df),NA) expect_error(t_running_skew4(thingy,time=times,window=window,min_df=min_df),NA) expect_error(t_running_kurt5(thingy,time=times,window=window,min_df=min_df),NA) expect_error(t_running_cent_moments(thingy,time=times,max_order=5L,window=window,min_df=min_df),NA) expect_error(t_running_cent_moments(thingy,time=times,max_order=5L,window=window,min_df=min_df,max_order_only=TRUE),NA) expect_error(t_running_std_moments(thingy,time=times,max_order=5L,window=window,min_df=min_df),NA) expect_error(t_running_cumulants(thingy,time=times,max_order=5L,window=window,min_df=min_df),NA) expect_error(t_running_apx_quantiles(thingy,time=times,p=ptiles,max_order=5L,window=window,min_df=min_df),NA) } } expect_error(t_running_sum(q)) expect_error(t_running_mean(q)) expect_error(t_running_sd(q)) expect_error(t_running_skew(q)) expect_error(t_running_kurt(q)) expect_error(t_running_sd3(q)) expect_error(t_running_skew4(q)) expect_error(t_running_kurt5(q)) expect_error(t_running_cent_moments(q,max_order=5L)) expect_error(t_running_cent_moments(q,max_order=5L,max_order_only=TRUE)) expect_error(t_running_std_moments(q,max_order=5L)) expect_error(t_running_cumulants(q,max_order=5L)) expect_error(t_running_apx_quantiles(q,p=ptiles,max_order=5L)) #expect_error(t_running_apx_quantiles(x,p=q,max_order=5L)) expect_error(t_running_apx_median(q,p=ptiles,max_order=5L)) })#UNFOLD context("code runs: t_running_foo and weights") test_that("t_running foo and weights",{#FOLDUP skip_on_cran() set.char.seed("95aa6ed1-14dc-473a-a7aa-8dc9869b1dbc") nel <- 30 xna <- rnorm(2*nel) xna[xna < 0] <- NA xall <- list(rnorm(nel), xna, as.integer(rnorm(nel,sd=100))) ptiles <- c(0.1,0.25,0.5,0.75,0.9) rp <- 5L for (thingy in xall) { for (times in list(NULL,cumsum(runif(length(thingy),min=0.2,max=0.4)))) { wna <- runif(length(thingy),min=1.0,max=3.0) wna[wna < 1.4] <- NA wall <- list(rep(1.0,length(thingy)), runif(length(thingy),min=0.9,max=3.5), wna, NULL) for (wts in wall) { wts_as_delta <- is.null(times) & !is.null(wts) can_test <- (!wts_as_delta || is.null(wts) || !any(is.na(wts))) && (!is.null(times) || wts_as_delta) if (can_test) { for (window in c(5.5,21.23,Inf,NULL)) { for (na_rm in c(FALSE,TRUE)) { for (lb_time in list(NULL,3+cumsum(runif(10,min=0.4,max=1.1)))) { expect_error(t_running_sum(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_mean(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sd(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_skew(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_kurt(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sd3(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_skew4(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_kurt5(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_cent_moments(thingy,time=times,wts=wts,max_order=5L,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_cent_moments(thingy,time=times,wts=wts,max_order=5L,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm,max_order_only=TRUE),NA) expect_error(t_running_std_moments(thingy,time=times,wts=wts,max_order=5L,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_cumulants(thingy,time=times,wts=wts,max_order=5L,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_apx_quantiles(thingy,time=times,wts=wts,p=ptiles,max_order=5L,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_apx_median(thingy,time=times,wts=wts,max_order=5L,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sharpe(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sharpe(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm,compute_se=TRUE),NA) expect_error(t_running_tstat(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) # NOTA BENE: these three do not accept an lb_time b/c they are associated with the thingy; # so we *do* expect these to error. expect_error(t_running_centered(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm)) expect_error(t_running_scaled(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm)) expect_error(t_running_zscored(thingy,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm)) } for (lookahead in c(0,8.3)) { expect_error(t_running_centered(thingy,time=times,wts=wts,window=window,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm),NA) expect_error(t_running_scaled(thingy,time=times,wts=wts,window=window,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm),NA) expect_error(t_running_zscored(thingy,time=times,wts=wts,window=window,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm),NA) } } } } } } } })#UNFOLD test_that("t_running foo logical weights",{# FOLDUP skip_on_cran() set.char.seed("422008f4-5782-4f01-a357-5b254a16660e") nel <- 30 xna <- rnorm(2*nel) xna[xna < 0] <- NA rp <- 5L times <- cumsum(runif(length(xna),min=0.5,max=1.5)) window <- 17.5 na_rm <- TRUE lb_time <- NULL wts <- rnorm(length(xna)) > 0 expect_error(t_running_sum(xna,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=FALSE,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_mean(xna,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=FALSE,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sd(xna,time=times,wts=wts,window=window,lb_time=lb_time,wts_as_delta=FALSE,restart_period=rp,na_rm=na_rm),NA) })# UNFOLD context("code runs: t_running_foo NA weights") test_that("t_running foo NA weights",{#FOLDUP skip_on_cran() set.char.seed("82da516f-6185-4f65-8576-f8c02e00d61e") nel <- 25 xall <- list(rnorm(nel)) ptiles <- c(0.1,0.25,0.5,0.75,0.9) rp <- 5L wts_as_delta <- FALSE for (thingy in xall) { wts <- runif(length(thingy),min=0.9,max=1.2) wts[wts < 1] <- NA for (times in list(cumsum(runif(length(thingy),min=0.2,max=0.4)))) { for (na_rm in c(FALSE,TRUE)) { for (lb_time in list(max(times) + c(1:2),3+cumsum(runif(10,min=0.4,max=1.1)))) { expect_error(t_running_sum(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_mean(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sd(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_skew(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_kurt(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sd3(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_skew4(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_kurt5(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_cent_moments(thingy,time=times,wts=wts,variable_win=TRUE,max_order=5L,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_cent_moments(thingy,time=times,wts=wts,variable_win=TRUE,max_order=5L,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm,max_order_only=TRUE),NA) expect_error(t_running_std_moments(thingy,time=times,wts=wts,variable_win=TRUE,max_order=5L,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_cumulants(thingy,time=times,wts=wts,variable_win=TRUE,max_order=5L,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_apx_quantiles(thingy,time=times,wts=wts,variable_win=TRUE,p=ptiles,max_order=5L,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_apx_median(thingy,time=times,wts=wts,variable_win=TRUE,max_order=5L,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sharpe(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sharpe(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm,compute_se=TRUE),NA) expect_error(t_running_tstat(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) # NOTA BENE: these three do not accept an lb_time b/c they are associated with the thingy; # so we *do* expect these to error. expect_error(t_running_centered(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm)) expect_error(t_running_scaled(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm)) expect_error(t_running_zscored(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm)) } for (lookahead in c(0,8.3)) { expect_error(t_running_centered(thingy,time=times,wts=wts,variable_win=TRUE,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm),NA) expect_error(t_running_scaled(thingy,time=times,wts=wts,variable_win=TRUE,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm),NA) expect_error(t_running_zscored(thingy,time=times,wts=wts,variable_win=TRUE,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm),NA) } } } } })#UNFOLD context("code runs: t_running_foo odds and ends") test_that("t_running foo variable_win",{#FOLDUP skip_on_cran() set.char.seed("6e33dc8f-7a0b-4128-956f-f9ac960549ee") nel <- 25 xna <- rnorm(2*nel) xna[xna < 0] <- NA xall <- list(rnorm(nel), xna, as.integer(rnorm(nel,sd=100))) ptiles <- c(0.1,0.25,0.5,0.75,0.9) rp <- 5L wts_as_delta <- FALSE for (thingy in xall) { for (times in list(cumsum(runif(length(thingy),min=0.2,max=0.4)))) { wall <- list(rep(1.0,length(thingy)), NULL) for (wts in wall) { for (na_rm in c(FALSE,TRUE)) { for (lb_time in list(max(times) + c(1:2),3+cumsum(runif(10,min=0.4,max=1.1)))) { expect_error(t_running_sum(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_mean(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sd(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_skew(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_kurt(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sd3(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_skew4(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_kurt5(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_cent_moments(thingy,time=times,wts=wts,variable_win=TRUE,max_order=5L,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_cent_moments(thingy,time=times,wts=wts,variable_win=TRUE,max_order=5L,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm,max_order_only=TRUE),NA) expect_error(t_running_std_moments(thingy,time=times,wts=wts,variable_win=TRUE,max_order=5L,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_cumulants(thingy,time=times,wts=wts,variable_win=TRUE,max_order=5L,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_apx_quantiles(thingy,time=times,wts=wts,variable_win=TRUE,p=ptiles,max_order=5L,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_apx_median(thingy,time=times,wts=wts,variable_win=TRUE,max_order=5L,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sharpe(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_sharpe(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm,compute_se=TRUE),NA) expect_error(t_running_tstat(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) # NOTA BENE: these three do not accept an lb_time b/c they are associated with the thingy; # so we *do* expect these to error. expect_error(t_running_centered(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm)) expect_error(t_running_scaled(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm)) expect_error(t_running_zscored(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm)) } for (lookahead in c(0,8.3)) { expect_error(t_running_centered(thingy,time=times,wts=wts,variable_win=TRUE,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm),NA) expect_error(t_running_scaled(thingy,time=times,wts=wts,variable_win=TRUE,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm),NA) expect_error(t_running_zscored(thingy,time=times,wts=wts,variable_win=TRUE,wts_as_delta=wts_as_delta,restart_period=rp,lookahead=lookahead,na_rm=na_rm),NA) } } } } } })#UNFOLD test_that("t_running foo infinite recompute",{#FOLDUP skip_on_cran() set.char.seed("b3efd3a7-9a46-4d37-b6a1-d864a5f9a0f0") nel <- 25 xna <- rnorm(2*nel) xna[xna < 0] <- NA xall <- list(rnorm(nel), xna, as.integer(rnorm(nel,sd=100))) ptiles <- c(0.1,0.25,0.5,0.75,0.9) rp <- 5L wts_as_delta <- FALSE for (thingy in xall) { for (times in list(cumsum(runif(length(thingy),min=0.2,max=0.4)))) { wall <- list(rep(1.0,length(thingy)), NULL) for (wts in wall) { for (na_rm in c(FALSE,TRUE)) { for (lb_time in list(max(times) + c(1:2),3+cumsum(runif(10,min=0.4,max=1.1)))) { expect_error(vers1 <- t_running_sd(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=rp,na_rm=na_rm),NA) expect_error(vers2 <- t_running_sd(thingy,time=times,wts=wts,variable_win=TRUE,lb_time=lb_time,wts_as_delta=wts_as_delta,restart_period=NA_integer_,na_rm=na_rm),NA) expect_equal(vers1,vers2) } } } } } })#UNFOLD context("t_running foo input params") test_that("window as integer or double",{#FOLDUP skip_on_cran() set.char.seed("c0b02fb4-cd35-4403-8a13-950b5f2236f2") nel <- 40 thingy <- rnorm(nel) times <- seq_along(thingy) iwin <- 50L dwin <- as.numeric(iwin) charwin <- 'window' expect_error(rd <- t_running_sum(thingy,time=times,window=dwin),NA) expect_error(ri <- t_running_sum(thingy,time=times,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(t_running_sum(thingy,times=times,window=charwin)) expect_error(rd <- t_running_mean(thingy,time=times,window=dwin),NA) expect_error(ri <- t_running_mean(thingy,time=times,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(t_running_mean(thingy,times=times,window=charwin)) expect_error(rd <- t_running_sd(thingy,time=times,window=dwin),NA) expect_error(ri <- t_running_sd(thingy,time=times,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(t_running_sd(thingy,times=times,window=charwin)) expect_error(rd <- t_running_skew(thingy,time=times,window=dwin),NA) expect_error(ri <- t_running_skew(thingy,time=times,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(t_running_skew(thingy,times=times,window=charwin)) expect_error(rd <- t_running_kurt(thingy,time=times,window=dwin),NA) expect_error(ri <- t_running_kurt(thingy,time=times,window=iwin),NA) expect_equal(rd,ri,tolerance=1e-12) expect_error(t_running_kurt(thingy,times=times,window=charwin)) })#UNFOLD context("trunning_foo check heywood cases") test_that("hit heywood branch",{#FOLDUP skip_on_cran() # not sure what I had planned here, and how it tests for heywoods. set.char.seed("3d318f1d-9921-4a20-84fc-c5ffc722d52c") xvals <- list(rnorm(1e5,mean=1e10)) x <- rnorm(1e4) x[x < 1.0] <- NA xvals[[length(xvals)+1]] <- x x <- rnorm(1e4) x[x < 1.5] <- NA xvals[[length(xvals)+1]] <- x for (x in xvals) { window <- 500 restart_period <- 100000L na_rm <- TRUE times <- seq_along(x) expect_error(y <- t_running_sd3(x,time=times,window=window,restart_period=restart_period,na_rm=na_rm),NA) ys <- y[window:nrow(y),1] expect_false(any(ys < 0 | is.na(ys))) expect_error(y <- t_running_skew4(x,time=times,window=window,restart_period=restart_period,na_rm=na_rm),NA) ys <- y[window:nrow(y),2] expect_false(any(ys < 0 | is.na(ys))) expect_error(y <- t_running_kurt5(x,time=times,window=window,restart_period=restart_period,na_rm=na_rm),NA) ys <- 3 + y[window:nrow(y),1] expect_false(any(ys < 0 | is.na(ys))) ys <- y[window:nrow(y),3] expect_false(any(ys < 0 | is.na(ys))) # not sure where I would expect Heywoods in the other ones. } })#UNFOLD context("running x y code") test_that("runs without error",{#FOLDUP skip_on_cran() set.char.seed("c13a49ac-14e9-462b-b81e-d3a5fc3be491") nel <- 20 xna <- rnorm(nel) xna[xna < -0.5] <- NA xall <- list(rnorm(nel), xna, as.integer(rnorm(nel,sd=100))) wna <- runif(nel,min=1,max=3) wna[wna < 1.5] <- NA wall <- list(rep(1.0,nel), runif(nel,min=0.9,max=3.5), wna, as.integer(ceiling(runif(nel,min=2,max=100))), as.logical(ceiling(pmax(0,rnorm(nel)))), NULL) for (x_thingy in xall) { y_thingy <- x_thingy + 1 for (wts in wall) { for (window in c(5,21,Inf,NULL)) { for (na_rm in c(FALSE,TRUE)) { for (rp in c(1L,40L)) { <<<<<<< Updated upstream times <- seq_along(x_thingy) expect_error(t_running_correlation(x_thingy,y_thingy,time=times,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_covariance(x_thingy,y_thingy,time=times,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_covariance_3(x_thingy,y_thingy,time=times,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_regression_slope(x_thingy,y_thingy,time=times,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_regression_intercept(x_thingy,y_thingy,time=times,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_regression_fit(x_thingy,y_thingy,wts=wts,time=times,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(t_running_regression_diagnostics(x_thingy,y_thingy,time=times,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) ======= expect_error(running_correlation(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(running_covariance(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(running_covariance_3(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(running_regression_slope(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(running_regression_intercept(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(running_regression_fit(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) expect_error(running_regression_diagnostics(x_thingy,y_thingy,wts=wts,window=window,restart_period=rp,na_rm=na_rm),NA) >>>>>>> Stashed changes } } } } } })#UNFOLD test_that("covariance correctness",{#FOLDUP skip_on_cran() set.char.seed("b81052f6-d7a5-4f3f-95cf-bc8d0030fcf8") window <- 30 maxplus <- 50 nel <- window + maxplus xvec <- rnorm(nel) beta_0 <- 0.33 beta_1 <- 5 sigma <- 0.5 yvec <- beta_0 + beta_1 * xvec + rnorm(length(xvec),sd=sigma) <<<<<<< Updated upstream times <- seq_along(xvec) expect_error(rho <- t_running_correlation(xvec,yvec,time=times,window=window-0.5),NA) expect_equal(rho[window], cor(xvec[1:window],yvec[1:window]), tolerance=1e-12) expect_equal(rho[1+window], cor(xvec[2:(1+window)],yvec[2:(1+window)]), tolerance=1e-12) expect_error(rho <- t_running_covariance(xvec,yvec,time=times,window=window-0.5,used_df=1),NA) expect_equal(rho[window], cov(xvec[1:window],yvec[1:window]), tolerance=1e-12) expect_equal(rho[1+window], cov(xvec[2:(1+window)],yvec[2:(1+window)]), tolerance=1e-12) expect_error(beta_1 <- t_running_regression_slope(xvec,yvec,time=times,window=window),NA) expect_error(beta_0 <- t_running_regression_intercept(xvec,yvec,time=times,window=window),NA) ======= expect_error(rho <- running_correlation(xvec,yvec,window=window),NA) expect_equal(rho[window], cor(xvec[1:window],yvec[1:window]), tolerance=1e-12) expect_equal(rho[1+window], cor(xvec[2:(1+window)],yvec[2:(1+window)]), tolerance=1e-12) expect_error(rho <- running_covariance(xvec,yvec,window=window,used_df=1),NA) expect_equal(rho[window], cov(xvec[1:window],yvec[1:window]), tolerance=1e-12) expect_equal(rho[1+window], cov(xvec[2:(1+window)],yvec[2:(1+window)]), tolerance=1e-12) expect_error(beta_1 <- running_regression_slope(xvec,yvec,window=window),NA) expect_error(beta_0 <- running_regression_intercept(xvec,yvec,window=window),NA) >>>>>>> Stashed changes mod0 <- lm(yvec[1:window] ~ xvec[1:window]) ses <- sqrt(diag(vcov(mod0))) expect_equal(beta_0[window], coefficients(mod0)[[1]], tolerance=1e-12) expect_equal(beta_1[window], coefficients(mod0)[[2]], tolerance=1e-12) <<<<<<< Updated upstream expect_error(beta_ff <- t_running_regression_fit(xvec,yvec,time=times,window=window),NA) expect_equal(beta_ff[,1,drop=FALSE], beta_0, tolerance=1e-12) expect_equal(beta_ff[,2,drop=FALSE], beta_1, tolerance=1e-12) expect_error(beta_dd <- t_running_regression_diagnostics(xvec,yvec,time=times,window=window),NA) ======= expect_error(beta_ff <- running_regression_fit(xvec,yvec,window=window),NA) expect_equal(beta_ff[,1,drop=FALSE], beta_0, tolerance=1e-12) expect_equal(beta_ff[,2,drop=FALSE], beta_1, tolerance=1e-12) expect_error(beta_dd <- running_regression_diagnostics(xvec,yvec,window=window),NA) >>>>>>> Stashed changes expect_equal(beta_dd[,1,drop=FALSE], beta_0, tolerance=1e-12) expect_equal(beta_dd[,2,drop=FALSE], beta_1, tolerance=1e-12) # also compare against diag(vcov(mod0)) expect_equal(beta_dd[window,3], summary(mod0)$sigma, tolerance=1e-12) expect_equal(beta_dd[window,4], as.numeric(ses[1]), tolerance=1e-12) expect_equal(beta_dd[window,5], as.numeric(ses[2]), tolerance=1e-12) # and a little bit forward for (offs in c(5, maxplus - 1)) { mod1 <- lm(yvec[offs + (1:window)] ~ xvec[offs + (1:window)]) ses <- sqrt(diag(vcov(mod1))) expect_equal(beta_0[offs+window], coefficients(mod1)[[1]], tolerance=1e-12) expect_equal(beta_1[offs+window], coefficients(mod1)[[2]], tolerance=1e-12) expect_equal(beta_dd[offs+window,3], summary(mod1)$sigma, tolerance=1e-12) expect_equal(beta_dd[offs+window,4], as.numeric(ses[1]), tolerance=1e-12) expect_equal(beta_dd[offs+window,5], as.numeric(ses[2]), tolerance=1e-12) } })#UNFOLD <<<<<<< Updated upstream test_that("compare to running",{#FOLDUP # the idea here is that skip_on_cran() set.char.seed("b81052f6-d7a5-4f3f-95cf-bc8d0030fcf8") window <- 30 maxplus <- 50 nel <- window + maxplus xvec <- rnorm(nel) beta_0 <- 0.33 beta_1 <- 5 sigma <- 0.5 yvec <- beta_0 + beta_1 * xvec + rnorm(length(xvec),sd=sigma) times <- seq_along(xvec) expect_error(trho <- t_running_correlation(xvec,yvec,time=times,window=window),NA) expect_error(rho <- running_correlation(xvec,yvec,window=window,check_negative_moments=FALSE),NA) expect_equal(rho, trho, tolerance=1e-12) expect_error(tsxy <- t_running_covariance(xvec,yvec,time=times,window=window),NA) expect_error(sxy <- running_covariance(xvec,yvec,window=window,check_negative_moments=FALSE),NA) expect_equal(sxy, tsxy, tolerance=1e-12) expect_error(tbeta_0 <- t_running_regression_intercept(xvec,yvec,time=times,window=window),NA) expect_error(beta_0 <- running_regression_intercept(xvec,yvec,window=window,check_negative_moments=FALSE),NA) expect_equal(beta_0, tbeta_0, tolerance=1e-12) expect_error(tbeta_1 <- t_running_regression_slope(xvec,yvec,time=times,window=window),NA) expect_error(beta_1 <- running_regression_slope(xvec,yvec,window=window,check_negative_moments=FALSE),NA) expect_equal(beta_1, tbeta_1, tolerance=1e-12) expect_error(tbeta_dd <- t_running_regression_diagnostics(xvec,yvec,time=times,window=window),NA) expect_error(beta_dd <- running_regression_diagnostics(xvec,yvec,window=window,check_negative_moments=FALSE),NA) expect_equal(beta_dd, tbeta_dd, tolerance=1e-12) })#UNFOLD ======= >>>>>>> Stashed changes test_that("covariance weighting correctness",{#FOLDUP skip_on_cran() set.char.seed("f3d1652c-2d83-4670-998b-f96d18d18374") window <- 50 nel <- window xvec <- rnorm(nel) beta_0 <- 0.33 beta_1 <- 5 sigma <- 0.5 yvec <- beta_0 + beta_1 * xvec + rnorm(length(xvec),sd=sigma) wts <- sample(c(1,2,3),nel,replace=TRUE) <<<<<<< Updated upstream times <- seq_along(xvec) expect_error(rho <- t_running_correlation(xvec,yvec,time=times,window=window,wts=wts),NA) bigx <- rep(xvec,wts) bigy <- rep(yvec,wts) bigtimes <- seq_along(bigx) expect_error(rho2 <- t_running_correlation(bigx,bigy,time=bigtimes,window=length(bigx)),NA) expect_equal(rho[window],rho2[length(rho2)], tolerance=1e-12) expect_error(rho <- t_running_covariance(xvec,yvec,time=times,wts=wts,window=window,normalize_wts=FALSE,used_df=1),NA) expect_error(rho2 <- t_running_covariance(bigx,bigy,time=bigtimes,window=length(bigx),used_df=1),NA) expect_equal(rho[window],rho2[length(rho2)], tolerance=1e-12) expect_error(beta_0 <- t_running_regression_intercept(xvec,yvec,time=times,wts=wts,window=window),NA) expect_error(beta_1 <- t_running_regression_slope(xvec,yvec,time=times,wts=wts,window=window),NA) expect_error(beta_02 <- t_running_regression_intercept(bigx,bigy,time=bigtimes,window=length(bigx)),NA) expect_error(beta_12 <- t_running_regression_slope(bigx,bigy,time=bigtimes,window=length(bigx)),NA) expect_equal(beta_0[window],beta_02[length(bigx)], tolerance=1e-12) expect_equal(beta_1[window],beta_12[length(bigx)], tolerance=1e-12) expect_error(beta_dd <- t_running_regression_diagnostics(xvec,yvec,time=times,wts=wts,window=window,normalize_wts=FALSE),NA) expect_error(beta_dd2 <- t_running_regression_diagnostics(bigx,bigy,time=bigtimes,window=length(bigx)),NA) ======= expect_error(rho <- running_correlation(xvec,yvec,wt=wts,window=window),NA) bigx <- rep(xvec,wts) bigy <- rep(yvec,wts) expect_error(rho2 <- running_correlation(bigx,bigy,window=length(bigx)),NA) expect_equal(rho[window],rho2[length(rho2)], tolerance=1e-12) expect_error(rho <- running_covariance(xvec,yvec,wt=wts,window=window,normalize_wts=FALSE,used_df=1),NA) expect_error(rho2 <- running_covariance(bigx,bigy,window=length(bigx),used_df=1),NA) expect_equal(rho[window],rho2[length(rho2)], tolerance=1e-12) expect_error(beta_0 <- running_regression_intercept(xvec,yvec,wts=wts,window=window),NA) expect_error(beta_1 <- running_regression_slope(xvec,yvec,wts=wts,window=window),NA) expect_error(beta_02 <- running_regression_intercept(bigx,bigy,window=length(bigx)),NA) expect_error(beta_12 <- running_regression_slope(bigx,bigy,window=length(bigx)),NA) expect_equal(beta_0[window],beta_02[length(bigx)], tolerance=1e-12) expect_equal(beta_1[window],beta_12[length(bigx)], tolerance=1e-12) expect_error(beta_dd <- running_regression_diagnostics(xvec,yvec,wts=wts,window=window,normalize_wts=FALSE),NA) expect_error(beta_dd2 <- running_regression_diagnostics(bigx,bigy,window=length(bigx)),NA) >>>>>>> Stashed changes expect_equal(beta_dd[window,,drop=TRUE],beta_dd2[length(bigx),,drop=TRUE], tolerance=1e-12) })#UNFOLD #for vim modeline: (do not edit) # vim:ts=2:sw=2:tw=79:fdm=marker:fmr=FOLDUP,UNFOLD:cms=#%s:syn=r:ft=r:ai:si:cin:nu:fo=croql:cino=p0t0c5(0: