n <- 500 p <- 10 beta_true <- rep(0, p) beta_nz <- c(-3, 1, 2) p_nz <- length(beta_nz) beta_true[1:p_nz] <- beta_nz n_unreg <- 0 # cov_mat <- matrix(NA, nrow = p, ncol = p) # # for (i in 1:p) { # for (j in i:p) { # cov_mat[i, j] <- cov_mat[j, i] <- 0.3^abs(i - j) # } # } # # cov_chol <- chol(cov_mat) x <- matrix(data = rnorm(n = n * p), nrow = n, ncol = p) y <- x %*% beta_true + rnorm(n) ufunc <- function(b) { 1/n * crossprod(x, (x %*% b - y) ) } tau <- 0.5 alpha <- 0.5 lambda1 <- 0.5 free_R <- free_lasso(p = p, lambda = lambda1, est_func = ufunc, alpha = alpha, tau = tau, tol_ee = 1e-20, tol_par = 1e-10, verbose = TRUE) free_R