R Under development (unstable) (2024-04-29 r86495 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # This tests a few things that are not run in the examples. > > library(fpc) > library(MASS) > library(diptest) > library(mclust) Package 'mclust' version 6.1.1 Type 'citation("mclust")' for citing this R package in publications. > options(digits=3) > > set.seed(4634) > face <- rFace(300,dMoNo=2,dNoEy=0,p=3) > grface <- as.integer(attr(face,"grouping")) > # discrproj(face,grface, clnum=1, method="bc")$units > discrproj(face,grface, clnum=1, method="anc")$units [,1] [,2] [,3] [1,] -1.3912 -0.3093 0.1093 [2,] 0.6211 -0.2233 0.0164 [3,] -0.0313 0.0749 -0.8074 > discrproj(face,grface, clnum=1, method="awc")$units [,1] [,2] [,3] [1,] 0.215 -0.3389 -0.51886 [2,] -0.370 0.0144 -0.00893 [3,] 0.111 0.7914 -0.23574 > > > pamk(face,krange=1:5,criterion="ch",usepam=FALSE,critout=TRUE) 1 clusters 0 2 clusters 1321 3 clusters 963 4 clusters 833 5 clusters 934 $pamobject Call: clara(x = sdata, k = k) Medoids: [,1] [,2] [,3] [1,] 0.119 3.53 1.49 [2,] 1.742 17.02 1.12 Objective function: 2.44 Clustering vector: int [1:300] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... Cluster sizes: 202 98 Best sample: [1] 5 11 18 21 28 40 50 61 62 65 79 82 83 86 93 94 105 119 130 [20] 160 172 180 182 194 195 202 206 208 217 223 230 231 239 248 250 256 259 261 [39] 264 268 271 274 277 299 Available components: [1] "sample" "medoids" "i.med" "clustering" "objective" [6] "clusinfo" "diss" "call" "silinfo" "data" $nc [1] 2 $crit [1] 0 1321 963 833 934 > > set.seed(20000) > face50 <- rFace(50,dMoNo=2,dNoEy=0,p=2) > pamk(dist(face50),krange=1:5,criterion="asw",critout=TRUE) 1 clusters 0 2 clusters 0.742 3 clusters 0.748 4 clusters 0.581 5 clusters 0.544 $pamobject Medoids: ID [1,] "22" "22" [2,] "34" "34" [3,] "49" "49" Clustering vector: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 Objective function: build swap 2.14 2.09 Available components: [1] "medoids" "id.med" "clustering" "objective" "isolation" [6] "clusinfo" "silinfo" "diss" "call" $nc [1] 3 $crit [1] 0.000 0.742 0.748 0.581 0.544 > > x <- c(1,2,3,6,6,7,8,120) > ff8 <- fixmahal(x) > summary(ff8) * Mahalanobis Fixed Point Clusters * Often a clear cluster in the data leads to several similar FPCs. The summary shows the representative FPCs of groups of similar FPCs. Method fuzzy was used. Number of representative FPCs: 1 FPCs with less than 4 points were skipped. FPCs with ratio of times found to number of points less than 0.1 were skipped. 0 iteration runs led to 0 skipped clusters. Weight 1 for r^2<= 3.84 weight 0 for r^2> 7.88 Constant ca= 3.84 corresponding to alpha= 0.95 FPC 1 Times found (group members): 9 Ratio to size: 1.29 Mean: [1] 4.71 Covariance matrix: [,1] [1,] 6.2 Number of points (sum of weights): 7 Number of points (rounded weights) in intersection of representative FPCs [,1] [1,] 7 > # ...dataset a bit too small for the defaults... > ff9 <- fixmahal(x, mnc=3, startn=3) > summary(ff9) * Mahalanobis Fixed Point Clusters * Often a clear cluster in the data leads to several similar FPCs. The summary shows the representative FPCs of groups of similar FPCs. Method fuzzy was used. Number of representative FPCs: 3 FPCs with less than 3 points were skipped. FPCs with ratio of times found to number of points less than 0.1 were skipped. 0 iteration runs led to 0 skipped clusters. Weight 1 for r^2<= 3.84 weight 0 for r^2> 7.88 Constant ca= 3.84 corresponding to alpha= 0.95 FPC 1 Times found (group members): 4 Ratio to size: 1.33 Mean: [1] 6.33 Covariance matrix: [,1] [1,] 0.222 Number of points (sum of weights): 3 FPC 2 Times found (group members): 3 Ratio to size: 1 Mean: [1] 2 Covariance matrix: [,1] [1,] 0.667 Number of points (sum of weights): 3 FPC 3 Times found (group members): 2 Ratio to size: 0.286 Mean: [1] 4.71 Covariance matrix: [,1] [1,] 6.2 Number of points (sum of weights): 7 Number of points (rounded weights) in intersection of representative FPCs [,1] [,2] [,3] [1,] 3 0 3 [2,] 0 3 3 [3,] 3 3 7 > > set.seed(776655) > v1 <- rnorm(100) > v2 <- rnorm(100) > d1 <- sample(1:5,100,replace=TRUE) > d2 <- sample(1:4,100,replace=TRUE) > ldata <- cbind(v1,v2,d1,d2) > fr <- flexmixedruns(ldata, + continuous=2,discrete=2,simruns=1,initial.cluster=c(rep(1,5),rep(2,45), + rep(3,50)), + control=list(minprior=0.1), + n.cluster=3,allout=FALSE) k= 3 new best fit found in run 1 k= 3 BIC= 1299 > print(fr$optsummary) Call: flexmix(formula = x ~ 1, k = k, cluster = initial.cluster, model = lcmixed(continuous = continuous, discrete = discrete, ppdim = ppdim, diagonal = diagonal), control = control) prior size post>0 ratio Comp.1 0.204 23 61 0.377 Comp.2 0.284 30 71 0.423 Comp.3 0.512 47 77 0.610 'log Lik.' -569 (df=35) AIC: 1208 BIC: 1299 > > dface <- dist(face50) > > > hclusttreeCBI(face50,minlevel=2,method="complete",scaling=TRUE) $result Call: hclust(d = dist(sdata), method = method) Cluster method : complete Distance : euclidean Number of objects: 50 $nc [1] 48 $clusterlist $clusterlist[[1]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] TRUE TRUE $clusterlist[[2]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[3]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[4]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[5]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[6]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[7]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE [37] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[8]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[9]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[10]] [1] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[11]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[12]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[13]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE [37] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[14]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[15]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[16]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE [49] FALSE FALSE $clusterlist[[17]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE [37] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[18]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[19]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[20]] [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[21]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [13] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[22]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [25] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[23]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE [37] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[24]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[25]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[26]] [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[27]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE [37] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[28]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[29]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[30]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[31]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE [49] FALSE FALSE $clusterlist[[32]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE [37] TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[33]] [1] TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[34]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE [13] TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[35]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[36]] [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[37]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE [49] FALSE FALSE $clusterlist[[38]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE [37] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[39]] [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE [13] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[40]] [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE [13] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[41]] [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE [13] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[42]] [1] TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[43]] [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE [13] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE [49] FALSE FALSE $clusterlist[[44]] [1] TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE [37] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[45]] [1] FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE [49] FALSE FALSE $clusterlist[[46]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE [49] TRUE TRUE $clusterlist[[47]] [1] TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE [37] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [49] FALSE FALSE $clusterlist[[48]] [1] FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE [49] TRUE TRUE $partition [1] 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 [39] 1 1 1 2 2 2 2 2 2 1 2 2 $clustermethod [1] "hclust, full tree" > > disthclusttreeCBI(dface,minlevel=2,method="complete") $result Call: hclust(d = as.dist(dmatrix), method = method) Cluster method : complete Distance : euclidean Number of objects: 50 $nc [1] 48 $clusterlist $clusterlist[[1]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] TRUE TRUE $clusterlist[[2]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[3]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[4]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[5]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE [37] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[6]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [37] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[7]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[8]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE [37] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[9]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [13] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[10]] [1] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[11]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[12]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE [49] FALSE FALSE $clusterlist[[13]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[14]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[15]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[16]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[17]] [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[18]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[19]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[20]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[21]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [25] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[22]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [37] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[23]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE [49] FALSE FALSE $clusterlist[[24]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[25]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE [37] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[26]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [25] FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[27]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE [13] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[28]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [13] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[29]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE [37] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[30]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE [37] FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[31]] [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [13] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[32]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [25] FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[33]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE [49] FALSE FALSE $clusterlist[[34]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE [13] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[35]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE [37] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[36]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[37]] [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE [13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[38]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[39]] [1] TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[40]] [1] FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[41]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[42]] [1] FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE [13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[43]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE [37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE [49] FALSE FALSE $clusterlist[[44]] [1] TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[45]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE [49] TRUE TRUE $clusterlist[[46]] [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[47]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE [49] TRUE TRUE $clusterlist[[48]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE [37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [49] TRUE TRUE $partition [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 [39] 2 2 2 2 2 2 2 2 2 2 2 2 $clustermethod [1] "hclust, full tree" > > noisemclustCBI(face50,G=1:5,emModelNames="VVV",nnk=2) $result Bayesian Information Criterion (BIC): EII VII EEI VEI EVI VVI EEE VEE EVE VVE EEV VEV EVV VVV 1 -521 -521 -506 -506 -506 -506 -525 -525 -525 -525 -525 -525 -525 -525 2 -498 -501 -501 -477 -464 -466 -505 -481 -467 -470 -467 -470 -470 -473 3 -468 -467 -480 -466 -476 -461 -482 -470 -479 -465 -480 -468 -486 -469 4 -449 -448 -485 -449 -445 -449 -488 -452 -439 -452 -486 -482 -444 -455 5 -456 -452 -456 -454 -444 -458 -460 -458 -448 -462 -451 -485 -456 -469 Top 3 models based on the BIC criterion: EVE,4 EVV,4 EVI,5 -439 -444 -444 $nc [1] 5 $nccl [1] 4 $clusterlist $clusterlist[[1]] [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE [13] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[2]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[3]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE [37] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [49] FALSE FALSE $clusterlist[[4]] [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE [49] FALSE FALSE $clusterlist[[5]] [1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE [13] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE [49] TRUE TRUE $partition [1] 5 5 5 1 5 5 5 5 5 1 1 1 1 5 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 [39] 3 3 3 4 4 4 4 4 5 5 5 5 $nnk [1] 2 $initnoise [1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE [49] TRUE TRUE $clustermethod [1] "mclustBIC" > > distnoisemclustCBI(dface,G=5,emModelNames="EEE",nnk=2, + mdsmethod="classical", + mdsdim=2) $result Bayesian Information Criterion (BIC): EII VII EEI VEI EVI VVI EEE VEE EVE VVE EEV VEV EVV VVV 5 -461 NA -496 NA NA NA -500 NA NA NA -496 NA NA NA Top 3 models based on the BIC criterion: EII,5 EEI,5 EEV,5 -461 -496 -496 $nc [1] 6 $nccl [1] 5 $clusterlist $clusterlist[[1]] 1 2 3 4 5 6 7 8 9 10 11 12 13 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE 14 15 16 17 18 19 20 21 22 23 24 25 26 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE 27 28 29 30 31 32 33 34 35 36 37 38 39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 40 41 42 43 44 45 46 47 48 49 50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE $clusterlist[[2]] 1 2 3 4 5 6 7 8 9 10 11 12 13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 14 15 16 17 18 19 20 21 22 23 24 25 26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE 27 28 29 30 31 32 33 34 35 36 37 38 39 TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 40 41 42 43 44 45 46 47 48 49 50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE $clusterlist[[3]] 1 2 3 4 5 6 7 8 9 10 11 12 13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 14 15 16 17 18 19 20 21 22 23 24 25 26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 27 28 29 30 31 32 33 34 35 36 37 38 39 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 40 41 42 43 44 45 46 47 48 49 50 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE $clusterlist[[4]] 1 2 3 4 5 6 7 8 9 10 11 12 13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 14 15 16 17 18 19 20 21 22 23 24 25 26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 27 28 29 30 31 32 33 34 35 36 37 38 39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 40 41 42 43 44 45 46 47 48 49 50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE $clusterlist[[5]] 1 2 3 4 5 6 7 8 9 10 11 12 13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 14 15 16 17 18 19 20 21 22 23 24 25 26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 27 28 29 30 31 32 33 34 35 36 37 38 39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 40 41 42 43 44 45 46 47 48 49 50 FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE $clusterlist[[6]] 1 2 3 4 5 6 7 8 9 10 11 12 13 TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE 14 15 16 17 18 19 20 21 22 23 24 25 26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 27 28 29 30 31 32 33 34 35 36 37 38 39 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 40 41 42 43 44 45 46 47 48 49 50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE $partition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 6 6 6 1 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 5 5 5 5 5 6 6 6 6 $nnk [1] 2 $initnoise [1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE [49] TRUE TRUE $clustermethod [1] "mclustBIC" > > mahalCBI(face50,clustercut=0.5) $result Mahalanobis Fixed Point Cluster object 3 representative stable fixed point clusters of totally 7 found fixed point clusters. $nc [1] 3 $clusterlist $clusterlist[[1]] [1] 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 [39] 0 0 0 0 0 0 0 0 0 0 0 0 $clusterlist[[2]] [1] 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 [39] 0 0 0 0 0 0 0 0 0 0 0 0 $clusterlist[[3]] [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [39] 1 1 1 1 1 1 1 1 0 0 0 0 $partition [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [39] 1 1 1 1 1 1 1 1 1 1 1 1 $clustermethod [1] "fixmahal" > > set.seed(20000) > face100 <- rFace(100,dMoNo=2,dNoEy=0,p=2) > cbf <- clusterboot(face100,B=2,clustermethod=speccCBI,showplots=TRUE,k=6,seed=50000) boot 1 boot 2 > cbf$nc [1] 6 > cbf$noisemethod [1] FALSE > cbf$bootmethod [1] "boot" > # suppressWarnings(if(require(tclust)) > # print(clusterboot(face100,B=2,clustermethod=tclustCBI,showplots=TRUE,k=5,seed=50000,noisemethod=TRUE))) > > > complete3 <- cutree(hclust(dface),3) > > cluster.stats(dface,complete3,G2=TRUE) $n [1] 50 $cluster.number [1] 3 $cluster.size [1] 32 14 4 $min.cluster.size [1] 4 $noisen [1] 0 $diameter [1] 8.53 4.94 9.00 $average.distance [1] 2.95 2.15 7.05 $median.distance [1] 2.94 1.44 8.32 $separation [1] 8.67 7.46 7.46 $average.toother [1] 15.5 12.9 20.6 $separation.matrix [,1] [,2] [,3] [1,] 0.00 8.67 17.24 [2,] 8.67 0.00 7.46 [3,] 17.24 7.46 0.00 $ave.between.matrix [,1] [,2] [,3] [1,] 0.0 13 24.4 [2,] 13.0 0 12.0 [3,] 24.4 12 0.0 $average.between [1] 15.2 $average.within [1] 3.05 $n.between [1] 632 $n.within [1] 593 $max.diameter [1] 9 $min.separation [1] 7.46 $within.cluster.ss [1] 319 $clus.avg.silwidths 1 2 3 0.764 0.821 0.346 $avg.silwidth [1] 0.746 $g2 [1] 1 $g3 NULL $pearsongamma [1] 0.838 $dunn [1] 0.829 $dunn2 [1] 1.71 $entropy [1] 0.844 $wb.ratio [1] 0.2 $ch [1] 229 $cwidegap [1] 2.90 2.49 8.32 $widestgap [1] 8.32 $sindex [1] 7.78 $corrected.rand NULL $vi NULL > > set.seed(55667788) > > data(crabs) > dc <- crabs[,4:8] > cmo <- mclustBIC(crabs[,4:8],G=9,modelNames="EEE") > # set.seed(12345) > cm <- mclustBIC(crabs[,4:8],G=9,modelNames="EEE", + initialization=list(noise=(1:200)[sample(200,50)])) > > > scm <- summary(cm,crabs[,4:8]) > scmo <- summary(cmo,crabs[,4:8]) > > set.seed(334455) > summary(mergenormals(crabs[,4:8],scm,method="ridge.ratio",by=0.05)) * Merging Gaussian mixture components * Method: ridge.ratio , cutoff value: 0.2 Original number of components: 9 (not including noise which is denoted by clustering=0) Number of clusters after merging: 1 Values at which clusters were merged: [,1] [,2] [1,] 8 0.828 [2,] 7 1.000 [3,] 6 1.000 [4,] 5 0.888 [5,] 4 1.000 [6,] 3 1.000 [7,] 2 0.784 [8,] 1 0.845 Components assigned to clusters: [,1] [1,] 0 [2,] 1 [3,] 1 [4,] 1 [5,] 1 [6,] 1 [7,] 1 [8,] 1 [9,] 1 [10,] 1 > summary(mergenormals(crabs[,4:8],scmo,method="ridge.uni",by=0.05)) * Merging Gaussian mixture components * Method: ridge.uni , cutoff value: 1 Original number of components: 9 Number of clusters after merging: 8 Values at which clusters were merged: [,1] [1,] 8 [2,] 9 Components assigned to clusters: [,1] [1,] 1 [2,] 1 [3,] 2 [4,] 3 [5,] 4 [6,] 5 [7,] 6 [8,] 7 [9,] 8 > # summary(mergenormals(crabs[,4:8],scm,method="diptantrum",by=0.05)) > # summary(mergenormals(crabs[,4:8],scmo,method="dipuni",by=0.05)) > # summary(mergenormals(crabs[,4:8],scm,method="predictive",M=2)) > > set.seed(20000) > x1 <- rnorm(50) > y <- rnorm(100) > x2 <- rnorm(40,mean=20) > x3 <- rnorm(10,mean=25,sd=100) > x0 <- cbind(c(x1,x2,x3),y) > > prediction.strength(x0,M=10,Gmax=4, + clustermethod=noisemclustCBI, + classification="qda") Prediction strength Clustering method: mclustBIC Maximum number of clusters: 4 Resampled data sets: 10 Mean pred.str. for numbers of clusters: 1 0.815 0.874 0.591 Cutoff value: 0.8 Largest number of clusters better than cutoff: 3 > > prediction.strength(dist(x0),M=10,Gmax=4, + clustermethod=claraCBI, + classification="centroids") Prediction strength Clustering method: clara/pam Maximum number of clusters: 4 Resampled data sets: 10 Mean pred.str. for numbers of clusters: 1 0 0 0 Cutoff value: 0.8 Largest number of clusters better than cutoff: 1 > > > set.seed(20000) > xdata <- c(rnorm(10,0,1),rnorm(10,8,1)) > clustermethod=c("claraCBI","dbscanCBI") > > clustermethodpars <- list() > clustermethodpars[[1]] <- clustermethodpars[[2]] <- list() > clustermethodpars[[2]]$eps <- 2 > clustermethodpars[[2]]$MinPts <- 2 > cbs <- clusterbenchstats(xdata,G=3,clustermethod=clustermethod, + distmethod=rep(TRUE,2),ncinput=c(TRUE,FALSE),scaling=FALSE, + clustermethodpars=clustermethodpars,nnruns=2,kmruns=2,fnruns=1,avenruns=1,useallg=TRUE) [1] "claraCBI" [1] "dbscanCBI" [1] "Computation of validity statistics" comsum 1 comsum 2 [1] "Simulation" 3 clusters; nn run 1 3 clusters; nn run 2 3 clusters; fn run 1 3 clusters; aven run 1 3 clusters; km run 1 3 clusters; km run 2 [1] "Simulation quantile re-standardisation" [1] "Simulation sd re-standardisation" > > print(cbs$sstat,aggregate=TRUE,weights=c(1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,1),include.othernc=cbs$cm$othernc) avewithin method 2 3 1 claraCBI NA 0.67 2 dbscanCBI 0.14 NA mnnd method 2 3 1 claraCBI NA 0.37 2 dbscanCBI 0.39 NA cvnnd method 2 3 1 claraCBI NA 0.32 2 dbscanCBI 0.3 NA maxdiameter method 2 3 1 claraCBI NA 0.66 2 dbscanCBI 0.56 NA widestgap method 2 3 1 claraCBI NA 0.59 2 dbscanCBI 0.59 NA sindex method 2 3 1 claraCBI NA 0.1 2 dbscanCBI 5.4 NA minsep method 2 3 1 claraCBI NA -1.6 2 dbscanCBI 17 NA asw method 2 3 1 claraCBI NA 0.55 2 dbscanCBI 1.7 NA dindex method 2 3 1 claraCBI NA 1.4 2 dbscanCBI -1.3 NA denscut method 2 3 1 claraCBI NA -2.3 2 dbscanCBI 0.38 NA highdgap method 2 3 1 claraCBI NA 0.73 2 dbscanCBI 0.55 NA pearsongamma method 2 3 1 claraCBI NA 0.54 2 dbscanCBI 1.9 NA withinss method 2 3 1 claraCBI NA 0.63 2 dbscanCBI 0.42 NA entropy method 2 3 1 claraCBI NA 0.85 2 dbscanCBI 1.6 NA pamc method 2 3 1 claraCBI NA 0.83 2 dbscanCBI 0.052 NA dmode method 2 3 1 claraCBI NA 1.2 2 dbscanCBI -0.87 NA aggregate method 2 3 1 claraCBI NA 0.15 2 dbscanCBI 1.2 NA > print(cbs$qstat,aggregate=TRUE,weights=c(1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,1),include.othernc=cbs$cm$othernc) avewithin method 2 3 1 claraCBI NA 0.88 2 dbscanCBI 0.38 NA mnnd method 2 3 1 claraCBI NA 0.62 2 dbscanCBI 0.75 NA cvnnd method 2 3 1 claraCBI NA 0.75 2 dbscanCBI 0.75 NA maxdiameter method 2 3 1 claraCBI NA 0.88 2 dbscanCBI 0.38 NA widestgap method 2 3 1 claraCBI NA 0.38 2 dbscanCBI 0.38 NA sindex method 2 3 1 claraCBI NA 0.38 2 dbscanCBI 1 NA minsep method 2 3 1 claraCBI NA 0.12 2 dbscanCBI 1 NA asw method 2 3 1 claraCBI NA 0.62 2 dbscanCBI 1 NA dindex method 2 3 1 claraCBI NA 0.88 2 dbscanCBI 0.12 NA denscut method 2 3 1 claraCBI NA 0.12 2 dbscanCBI 0.25 NA highdgap method 2 3 1 claraCBI NA 0.88 2 dbscanCBI 0.38 NA pearsongamma method 2 3 1 claraCBI NA 0.5 2 dbscanCBI 1 NA withinss method 2 3 1 claraCBI NA 0.88 2 dbscanCBI 0.38 NA entropy method 2 3 1 claraCBI NA 0.75 2 dbscanCBI 1 NA pamc method 2 3 1 claraCBI NA 0.88 2 dbscanCBI 0.38 NA dmode method 2 3 1 claraCBI NA 0.88 2 dbscanCBI 0.19 NA aggregate method 2 3 1 claraCBI NA 0.6 2 dbscanCBI 0.53 NA > > > > proc.time() user system elapsed 6.73 0.40 7.11