# This tests a few things that are not run in the examples. library(fpc) library(MASS) library(diptest) library(mclust) options(digits=3) set.seed(4634) face <- rFace(300,dMoNo=2,dNoEy=0,p=3) grface <- as.integer(attr(face,"grouping")) # discrproj(face,grface, clnum=1, method="bc")$units discrproj(face,grface, clnum=1, method="anc")$units discrproj(face,grface, clnum=1, method="awc")$units pamk(face,krange=1:5,criterion="ch",usepam=FALSE,critout=TRUE) set.seed(20000) face50 <- rFace(50,dMoNo=2,dNoEy=0,p=2) pamk(dist(face50),krange=1:5,criterion="asw",critout=TRUE) x <- c(1,2,3,6,6,7,8,120) ff8 <- fixmahal(x) summary(ff8) # ...dataset a bit too small for the defaults... ff9 <- fixmahal(x, mnc=3, startn=3) summary(ff9) set.seed(776655) v1 <- rnorm(100) v2 <- rnorm(100) d1 <- sample(1:5,100,replace=TRUE) d2 <- sample(1:4,100,replace=TRUE) ldata <- cbind(v1,v2,d1,d2) fr <- flexmixedruns(ldata, continuous=2,discrete=2,simruns=1,initial.cluster=c(rep(1,5),rep(2,45), rep(3,50)), control=list(minprior=0.1), n.cluster=3,allout=FALSE) print(fr$optsummary) dface <- dist(face50) hclusttreeCBI(face50,minlevel=2,method="complete",scaling=TRUE) disthclusttreeCBI(dface,minlevel=2,method="complete") noisemclustCBI(face50,G=1:5,emModelNames="VVV",nnk=2) distnoisemclustCBI(dface,G=5,emModelNames="EEE",nnk=2, mdsmethod="classical", mdsdim=2) mahalCBI(face50,clustercut=0.5) set.seed(20000) face100 <- rFace(100,dMoNo=2,dNoEy=0,p=2) cbf <- clusterboot(face100,B=2,clustermethod=speccCBI,showplots=TRUE,k=6,seed=50000) cbf$nc cbf$noisemethod cbf$bootmethod # suppressWarnings(if(require(tclust)) # print(clusterboot(face100,B=2,clustermethod=tclustCBI,showplots=TRUE,k=5,seed=50000,noisemethod=TRUE))) complete3 <- cutree(hclust(dface),3) cluster.stats(dface,complete3,G2=TRUE) set.seed(55667788) data(crabs) dc <- crabs[,4:8] cmo <- mclustBIC(crabs[,4:8],G=9,modelNames="EEE") # set.seed(12345) cm <- mclustBIC(crabs[,4:8],G=9,modelNames="EEE", initialization=list(noise=(1:200)[sample(200,50)])) scm <- summary(cm,crabs[,4:8]) scmo <- summary(cmo,crabs[,4:8]) set.seed(334455) summary(mergenormals(crabs[,4:8],scm,method="ridge.ratio",by=0.05)) summary(mergenormals(crabs[,4:8],scmo,method="ridge.uni",by=0.05)) # summary(mergenormals(crabs[,4:8],scm,method="diptantrum",by=0.05)) # summary(mergenormals(crabs[,4:8],scmo,method="dipuni",by=0.05)) # summary(mergenormals(crabs[,4:8],scm,method="predictive",M=2)) set.seed(20000) x1 <- rnorm(50) y <- rnorm(100) x2 <- rnorm(40,mean=20) x3 <- rnorm(10,mean=25,sd=100) x0 <- cbind(c(x1,x2,x3),y) prediction.strength(x0,M=10,Gmax=4, clustermethod=noisemclustCBI, classification="qda") prediction.strength(dist(x0),M=10,Gmax=4, clustermethod=claraCBI, classification="centroids") set.seed(20000) xdata <- c(rnorm(10,0,1),rnorm(10,8,1)) clustermethod=c("claraCBI","dbscanCBI") clustermethodpars <- list() clustermethodpars[[1]] <- clustermethodpars[[2]] <- list() clustermethodpars[[2]]$eps <- 2 clustermethodpars[[2]]$MinPts <- 2 cbs <- clusterbenchstats(xdata,G=3,clustermethod=clustermethod, distmethod=rep(TRUE,2),ncinput=c(TRUE,FALSE),scaling=FALSE, clustermethodpars=clustermethodpars,nnruns=2,kmruns=2,fnruns=1,avenruns=1,useallg=TRUE) print(cbs$sstat,aggregate=TRUE,weights=c(1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,1),include.othernc=cbs$cm$othernc) print(cbs$qstat,aggregate=TRUE,weights=c(1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,1),include.othernc=cbs$cm$othernc)