# A unit test for tslm function if (require(testthat)) { mv_y <- ts(cbind(rnorm(120, 0, 3) + 1:120 + 20 * sin(2 * pi * (1:120) / 12), rnorm(120, 3, 7) + 1:120 + 16 * sin(2 * pi * (1:120 + 6) / 12)), frequency = 12) mv_x <- ts(cbind(rnorm(120, 0, 8) + (1:120) / 2 + 42 * sin(2 * pi * (1:120) / 12), rnorm(120, 3, 7) + (1:120) * -1 + 20 * sin(2 * pi * (1:120 + 6) / 12)), frequency = 12) v_y <- ts(rnorm(120, 0, 8) + (1:120) / 2 + 12 * sin(2 * pi * (1:120) / 12), frequency = 12) v_x <- ts(rnorm(120, 0, 1) + (1:120) * (-1) + 28 * sin(2 * pi * (1:120) / 12), frequency = 12) data <- datamat(mv_y, mv_x, v_y, v_x, fourier(v_y, 3)) test_that("tests on model building with univariate time series", { fit1 <- tslm(v_y ~ trend + season, data = data) fit2 <- tslm(v_y ~ trend + season, data = data, lambda = 2, biasadj = FALSE) fit3 <- tslm(v_y ~ trend + season, data = data, lambda = 2, biasadj = TRUE) expect_false(identical(fit2$fitted.values, fit3$fitted.values)) fit2 <- tslm(v_y ~ trend + season, data = data.frame(trend = rnorm(120))) expect_false(identical(fit1$model, fit2$model)) fit2 <- tslm(v_y ~ trend + season) expect_named(fit1, names(fit2)) expect_identical(fit1$model, fit2$model, ignore_attr = "terms") expect_identical(fit1$coefficients, fit2$coefficients) fit1 <- tslm(USAccDeaths ~ trend + season, data = USAccDeaths) fit2 <- tslm(USAccDeaths ~ trend + season) expect_named(fit1, names(fit2)) expect_identical(fit1$model, fit2$model, ignore_attr = "terms") expect_identical(fit1$coefficients, fit2$coefficients) expect_warning(fit3 <- tslm( USAccDeaths ~ trend + season, data = USAccDeaths, subset = time(USAccDeaths) %% 1 < 0.1 )) fit <- tslm(USAccDeaths ~ trend + season + trend * season, data = USAccDeaths) expect_true("trend:season" %in% attr(fit$terms, "term.labels")) }) test_that("tslm parity with lm", { fit1 <- tslm(v_y ~ v_x + fourier(v_y, 3), data = data.frame(v_y = v_y)) fit2 <- lm(v_y ~ v_x + fourier(v_y, 3), data = data.frame(v_y = v_y)) expect_equal(fit1$coefficients, fit1$coefficients) expect_equal(fit1$model, fit2$model, ignore_attr = "terms") }) test_that("tests on subsetting data", { a <- mv_y[, 1] expect_warning(fit1 <- tslm(mv_y ~ trend, subset = a < 20), "Subset has been assumed contiguous") expect_error(fit2 <- tslm(mv_y ~ trend, subset = subset(mv_y, mv_y[, 1] < 20))) expect_warning(tslm(v_y ~ trend + season + trend * season, subset = v_y < 100), "Subset has been assumed contiguous") }) test_that("tests on model building with multivariate time series", { fit1 <- tslm(mv_y ~ trend + season) fit2 <- tslm(mv_y ~ trend + season, lambda = 0.5) expect_false(identical(fit1$coefficients, fit2$coefficients)) fit3 <- tslm(mv_y ~ trend + season, lambda = 0.5, biasadj = TRUE) expect_false(identical(fit2$fitted.values, fit3$fitted.values)) fit2 <- tslm(mv_y ~ trend + season, data = data) expect_named(fit1,names(fit2)) expect_identical(fit1$model, fit2$model, ignore_attr = "terms") expect_identical(fit1$coefficients, fit2$coefficients) expect_warning(fit3 <- tslm(mv_y ~ trend + season, subset = mv_y[, 1] < 1), "Subset has been assumed contiguous") expect_warning(fit4 <- tslm(mv_y ~ trend + season, data = data, subset = mv_y[, 1] < 1), "Subset has been assumed contiguous") expect_named(fit3,names(fit4)) expect_identical(fit3$model, fit4$model, ignore_attr = "terms") expect_identical(fit3$coefficients, fit4$coefficients) }) test_that("tests with bad input", { expect_error(tslm(mpg ~ cyl, data = mtcars), "Not time series data") expect_error(tslm(tmp2 ~ trend + season + trend * season, subset = subset(tmp2, month = "January"), "Non-seasonal data cannot be modelled using a seasonal factor")) }) test_that("forecast.lm", { fit1 <- tslm(v_y ~ trend + season, lambda = 2, biasadj = FALSE) fit2 <- tslm(v_y ~ trend + season, lambda = 2, biasadj = TRUE) fcast1 <- forecast(fit1, h = 60, biasadj = FALSE) fcast2 <- forecast(fit2, h = 60, biasadj = TRUE) expect_false(identical(fcast1$mean, fcast2$mean)) fred <- tslm(ldeaths ~ trend + season, lambda = 0) fc <- forecast(fred) }) test_that("Unusual usage", { expect_silent(fit1 <- tslm(v_y ~ trend + v_x + I(v_x ^ 2) + fourier(v_x, 3))) # forecast(fit1, newdata=data.frame(v_x=ts(1:2,freq=12))) # tslm(v_y ~ trend + I(v_x) + I(v_x^2) + fourier(v_x, 3), data=data) # tslm(v_y ~ trend + season + I(v_x) + I(v_x^2) + fourier(ts(season, freq=12), 3)) # fit2 <- tslm(v_y ~ trend + season + I(v_x)*fourier(v_x,3)) # forecast(fit2, newdata=data.frame(v_x=ts(1:2,freq=12))) # tslm(v_y ~ trend + season + I(v_x)*fourier(v_x,3),data=data) }) test_that("Missing values", { USMissingDeaths <- USAccDeaths USMissingDeaths[c(1,44, 72)] <- NA timetrend <- 1:72 fit <- tslm(USMissingDeaths ~ season + timetrend) expect_equal(sum(is.na(residuals(fit))), 3) fc <- forecast(fit, newdata = data.frame(timetrend = 73)) expect_length(fc$mean, 1) }) }