library(fnets) set.seed(123) n <- 500 p <- 20 idio <- sim.var(n, p) x <- idio$data test_that("var ds executes", { skip_on_cran() fv <- fnets.var(x, center = TRUE, method = "ds", var.order = 1, tuning.args = list(tuning = "cv", n.folds = 1, path.length = 10), n.cores = 1 ) plot(fv) plot(fv, display = 'tuning') plot(fv, display = 'heatmap') predict(fv) par.lrpc(fv, n.cores = 1) expect_equal(attr(fv, "class"), "fnets") }) test_that("var high order", { skip_on_cran() fv <- fnets.var(x, center = TRUE, method = "lasso", var.order = 5, tuning.args = list(tuning = "cv", n.folds = 1, path.length = 10), n.cores = 1 ) plot(fv) plot(fv, display = 'tuning') plot(fv, display = 'heatmap') predict(fv) predict(fv, n.ahead = 10) predict(fv, newdata = x, n.ahead = 10) expect_equal(attr(fv, "class"), "fnets") }) test_that("threshold", { skip_on_cran() fv <- fnets.var(x, center = TRUE, method = "lasso", var.order = 1, do.threshold = TRUE, tuning.args = list(tuning = "cv", n.folds = 1, path.length = 10), n.cores = 1 ) th <- threshold(fv$beta) th plot(th) }) test_that("var cv executes", { skip_on_cran() fv <- fnets.var(x, center = TRUE, method = "lasso", var.order = 1:2, tuning.args = list(tuning = "cv", n.folds = 1, path.length = 10), n.cores = 1 ) expect_equal(attr(fv, "class"), "fnets") }) test_that("var bic executes", { skip_on_cran() fv <- fnets.var(x, center = TRUE, method = "lasso", var.order = 1:2, tuning.args = list(tuning = "bic", n.folds = 1, path.length = 10), n.cores = 1 ) plot(fv, display = 'tuning') plot(fv, display = "heatmap", groups = rep(c(1, 2), each = p/2), group.colours = c("red", "blue")) expect_equal(attr(fv, "class"), "fnets") })