# commented out for CRAN library(fnets) set.seed(123) n <- 500 p <- 20 common <- sim.unrestricted(n, p) idio <- sim.var(n, p) x <- common$data + idio$data out <- fnets( x, q = NULL, var.order = 1, var.method = "lasso", do.threshold = TRUE, do.lrpc = TRUE, tuning.args = list( tuning = "cv", n.folds = 1, path.length = 10 ), var.args = list(n.cores = 2) ) test_that("fnets executes", { skip_on_cran() expect_equal(attr(out, "class"), "fnets") }) test_that("predict executes", { skip_on_cran() pre <- predict(out, common.method = "unrestricted") pre <- predict(out, common.method = "restricted") pre <- predict(out, common.method = "unrestricted", n.ahead = 10) }) test_that("plot executes", { skip_on_cran() plot(out, type = "granger", display = "network") plot(out, type = "lrpc", display = "network") plot(out, type = "pc", display = "network") plot(out, type = "granger", display = "heatmap") plot(out, type = "lrpc", display = "heatmap") plot(out, type = "pc", display = "heatmap") plot(out, display = "tuning") }) test_that("network executes", { skip_on_cran() network(out, type = "granger") network(out, type = "pc") network(out, type = "lrpc") }) test_that("print executes", { skip_on_cran() print(out) }) test_that("fnets.factor.model restricted executes", { skip_on_cran() out <- fnets.factor.model(x, fm.restricted = TRUE) expect_equal(attr(out, "class"), "fm") }) test_that("fnets.factor.model unrestricted executes", { skip_on_cran() out <- fnets.factor.model(x, fm.restricted = FALSE) expect_equal(attr(out, "class"), "fm") }) test_that("q=0", { out <- fnets( x, q = 0, var.order = 1, var.method = "lasso", do.threshold = TRUE, do.lrpc = TRUE, tuning.args = list( tuning = "cv", n.folds = 1, path.length = 10 ), var.args = list(n.cores = 2) ) predict(out, n.ahead = 10) predict(out, newdata = x, n.ahead = 10) })