context("test_analyses") #analysis of unknown modifications test_that("analyze_unknown_mods is succesful", { data <- tibble::tibble( "traceR_mod.peptides" = c("AACLLPK", "ALTDM(UniMod:35)PQM(UniMod:35)R", "ALTDM(DummyModification)PQMK", "ALTDM(UniMod:35)PQM(UniMod:35)R", "ALTDM(DummyModification)PQMK"), "traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, TRUE, FALSE, TRUE), "traceR_precursor" = c("AACLLPK2", "ALTDM(UniMod:35)PQM(UniMod:35)R2", "ALTDM(DummyModification)PQMK3", "ALTDM(UniMod:35)PQM(UniMod:35)R2", "ALTDM(DummyModification)PQMK3"), "traceR_precursor_unknownMods" = c(FALSE, FALSE, TRUE, FALSE, TRUE) ) #precursor level output_plot <- analyze_unknown_mods(input_df = data, level = "precursor", plot = TRUE, plot_characteristic = "absolute") output_report <- analyze_unknown_mods(input_df = data, level = "precursor", plot = FALSE) expect_error(analyze_unknown_mods(input_df = data[,1:2], level = "precursor", plot = TRUE, plot_characteristic = "absolute"), "For precursor level: traceR_precursor and traceR_precursor_unknownMods columns must be present in submitted data.") expect_s3_class(output_plot, "ggplot") expect_s3_class(output_report, "tbl") expect_equal(nrow(output_report), 2) expect_equal(ncol(output_report), 3) expect_equal(output_report$absolute_count , c(2, 1)) #peptide level output_plot <- analyze_unknown_mods(input_df = data, level = "modified_peptides", plot = TRUE, plot_characteristic = "relative") output_report <- analyze_unknown_mods(input_df = data, level = "modified_peptides", plot = FALSE) expect_error(analyze_unknown_mods(input_df = data[,3:4], level = "modified_peptides", plot = TRUE, plot_characteristic = "absolute"), "For peptide level: traceR_mod.peptides and traceR_mod.peptides_unknownMods columns must be present in submitted data.") expect_s3_class(output_plot, "ggplot") expect_s3_class(output_report, "tbl") expect_equal(nrow(output_report), 2) expect_equal(ncol(output_report), 3) expect_equal(output_report$absolute_count , c(2, 1)) }) #analysis of unknown modifications test_that("analyze_unknown_mods is succesful", { data <- tibble::tibble( "traceR_connected_pg_prec" = c("common_common", "common_unique", "unique_common"), "traceR_connected_mod.pep_prec" = c("common_common", "unique_unique", "common_common"), "traceR_traced_proteinGroups" = c("common", "common", "unique"), "traceR_traced_mod.peptides" = c("common", "unique", "common"), "traceR_traced_precursor" = c("common", "unique", "common"), "traceR_proteinGroups" = c("P02768", "P02671", "Q92496"), "traceR_mod.peptides" = c("AAC(UniMod:4)LLPK", "RLEVDIDIK", "EGIVEYPR"), "traceR_precursor" = c("AAC(UniMod:4)LLPK1", "RLEVDIDIK2", "EGIVEYPR2") ) # proteingroup_precursor connection #upper upper_plot <- analyze_connected_levels(input_df = data, connected_levels = "proteinGroup_precursor",count_level = "upper", plot = TRUE, plot_characteristic = "relative") upper_report <- analyze_connected_levels(input_df = data, connected_levels = "proteinGroup_precursor",count_level = "upper", plot = FALSE) #lower lower_plot <- analyze_connected_levels(input_df = data, connected_levels = "proteinGroup_precursor",count_level = "lower", plot = TRUE, plot_characteristic = "relative") lower_report <- analyze_connected_levels(input_df = data, connected_levels = "proteinGroup_precursor",count_level = "lower", plot = FALSE) expect_error(analyze_connected_levels(input_df = data[,3:4], connected_levels = "proteinGroup_precursor",count_level = "upper", plot = TRUE, plot_characteristic = "relative"), "For connected levels - proteinGroup_precursor: traceR_connected_pg_prec column must be present in submitted data.") expect_s3_class(upper_plot, "ggplot") expect_s3_class(lower_plot, "ggplot") expect_s3_class(upper_report, "tbl") expect_s3_class(lower_report, "tbl") expect_equal(nrow(upper_report), 3) expect_equal(ncol(upper_report), 3) expect_equal(nrow(lower_report), 3) expect_equal(ncol(lower_report), 3) expect_equal(upper_report$absolute_count , c(1, 1, 1)) expect_equal(lower_report$absolute_count , c(1, 1, 1)) # proteingroup_precursor connection #upper upper_plot <- analyze_connected_levels(input_df = data, connected_levels = "mod.peptides_precursor",count_level = "upper", plot = TRUE, plot_characteristic = "relative") upper_report <- analyze_connected_levels(input_df = data, connected_levels = "mod.peptides_precursor",count_level = "upper", plot = FALSE) #lower lower_plot <- analyze_connected_levels(input_df = data, connected_levels = "mod.peptides_precursor",count_level = "lower", plot = TRUE, plot_characteristic = "relative") lower_report <- analyze_connected_levels(input_df = data, connected_levels = "mod.peptides_precursor",count_level = "lower", plot = FALSE) expect_error(analyze_connected_levels(input_df = data[,3:4], connected_levels = "mod.peptides_precursor",count_level = "upper", plot = TRUE, plot_characteristic = "relative"), "For connected levels - mod.peptides_precursor: traceR_connected_mod.pep_prec column must be present in submitted data.") expect_s3_class(upper_plot, "ggplot") expect_s3_class(lower_plot, "ggplot") expect_s3_class(upper_report, "tbl") expect_s3_class(lower_report, "tbl") expect_equal(nrow(upper_report), 2) expect_equal(ncol(upper_report), 3) expect_equal(nrow(lower_report), 2) expect_equal(ncol(lower_report), 3) expect_equal(upper_report$absolute_count , c(2, 1)) expect_equal(lower_report$absolute_count , c(2, 1)) })