# library(flexCountReg) # # ### Name: flexCountReg.predict # ### Title: Function for generating predictions based on the random # ### parameters negative binomial with multiple optional methods # ### Aliases: flexCountReg.predict # # ### ** Examples # # # ## Poisson-Lindley Model # data("washington_roads") # washington_roads$AADTover10k <- ifelse(washington_roads$AADT>10000,1,0) # poislind.mod <- flexCountReg(Animal ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # data=washington_roads, dist="Poisson Lindley", # method="BHHH") # summary(poislind.mod) # # pred <- flexCountReg.predict(poislind.mod, washington_roads) # # hist(pred) # # # # # ### Name: flexCountReg # ### Title: Estimate flexible count regression models with and without # ### random parameters # ### Aliases: flexCountReg # # ### ** Examples # # ## Poisson-Lindley Model # data("washington_roads") # washington_roads$AADTover10k <- ifelse(washington_roads$AADT>10000,1,0) # poislind.mod <- flexCountReg(Animal ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # data=washington_roads, dist="Poisson Lindley", # method="sann") # summary(poislind.mod) # # # # # ### Name: Generalized-Waring # ### Title: Generalized Waring Distribution # ### Aliases: Generalized-Waring dgwar pgwar qgwar rgwar # # ### ** Examples # # dgwar(0, mu=1, alpha=1, rho=3) # pgwar(c(0,1,2,3), mu=1, alpha=2, rho=3) # qgwar(c(0.1, 0.5, 0.9), mu=1, alpha=2, rho=3) # rgwar(10, mu=1, alpha=2, rho=3) # # # # # ### Name: genWaring # ### Title: Function for estimating a Generalized Waring regression model # ### Aliases: genWaring # # ### ** Examples # # # # Generalized Waring Model # data("washington_roads") # genwaring.mod <- genWaring(Total_crashes ~ lnaadt + lnlength, # data=washington_roads, # method='BHHH') # summary(genwaring.mod) # # # # ### Name: invgamma # ### Title: Inverse Gamma Distribution # ### Aliases: invgamma dinvgamma pinvgamma qinvgamma rinvgamma # # ### ** Examples # # dinvgamma(1, shape=3, scale=2) # pinvgamma(c(0.1, 0.5, 1, 3, 5, 10, 30), shape=3, scale=2) # qinvgamma(c(0.1,0.3,0.5,0.9,0.95), shape=3, scale=2) # rinvgamma(30, shape=3, scale=2) # # # # # ### Name: mae # ### Title: Calculate Mean Absolute Error (MAE) # ### Aliases: mae # # ### ** Examples # # y <- c(1, 2, 3) # mu <- c(1.1, 1.9, 3.2) # mae(y, mu) # # # # # ### Name: mgf_lognormal # ### Title: Moment Generating Function for a Lognormal Distribution # ### Aliases: mgf_lognormal # # ### ** Examples # # mu <- 0 # sigma <- 1 # n <- 1 # mgf_value <- mgf_lognormal(mu, sigma, n) # print(mgf_value) # # # ### Name: myAIC # ### Title: Calculate Akaike Information Criterion (AIC) # ### Aliases: myAIC # # ### ** Examples # # LL <- -120.5 # nparam <- 5 # myAIC(LL, nparam) # # # # # ### Name: myBIC # ### Title: Calculate Bayesian Information Criterion (BIC) # ### Aliases: myBIC # # ### ** Examples # # LL <- -120.5 # nparam <- 5 # n <- 100 # myBIC(LL, nparam, n) # # # # # ### Name: nbg # ### Title: Function for estimating a variety of negative binomial models # ### (NB-1, NB-2, NB-P and generalized versions of each) # ### Aliases: nbg # # ### ** Examples # # # ## NB-P model # data("washington_roads") # washington_roads$AADTover10k <- ifelse(washington_roads$AADT>10000,1,0) # # nbp.base <- nbg(Total_crashes ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # data=washington_roads, form = 'nbp', method = 'BHHH', # max.iters=3000) # summary(nbp.base) # # ## Generalized NB-P model # # nbp.overdispersion <- nbg(Total_crashes ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # data=washington_roads, # form = 'nbp', # method = 'NM', # max.iters=3000, # ln.alpha.formula = ~ 1+lnlength) # summary(nbp.overdispersion) # # ## NB-1 Model # nb1.base <- nbg(Total_crashes ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # data=washington_roads, form = 'nb1', # method = 'NM', # max.iters=3000) # summary(nb1.base) # # ## Generalize NB-1 Model # nb1.overdispersion <- nbg(Total_crashes ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # data=washington_roads, form = 'nb1', # method = 'NM', # max.iters=3000, ln.alpha.formula = ~ 1+lnlength) # summary(nb1.overdispersion) # # ## NB-2 Model # nb2.base <- nbg(Total_crashes ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # data=washington_roads, form = 'nb2', # method = 'BFGS', # max.iters=3000) # summary(nb2.base) # # ## Generalize NB-2 Model # nb2.overdispersion <- nbg(Total_crashes ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # data=washington_roads, form = 'nb2', # method = 'NM', # max.iters=3000, ln.alpha.formula = ~ 1+lnlength) # summary(nb2.overdispersion) # # # # # ### Name: Negative-Binomial-Lindley # ### Title: Poisson-Lindley-Gamma (Negative Binomial-Lindley) Distribution # ### Aliases: Negative-Binomial-Lindley dplindGamma pplindGamma qplindGamma # ### rplindGamma # # ### ** Examples # # dplindGamma(0, mean=0.75, theta=7, alpha=2, ndraws=100) # pplindGamma(c(0,1,2,3,5,7,9,10), mean=0.75, theta=7, alpha=2, ndraws=100) # qplindGamma(c(0.1,0.3,0.5,0.9,0.95), lambda=4.67, theta=7, alpha=2, # ndraws=100) # rplindGamma(1, lambda=4.67, theta=7, alpha=2, ndraws=100) # # # # # ### Name: poisGE # ### Title: Poisson-Generalized-Exponential Regression # ### Aliases: poisGE # # ### ** Examples # # # Generalized Poisson-Generalized-Exponential # data("washington_roads") # washington_roads$AADTover10k <- ifelse(washington_roads$AADT>10000,1,0) # # poisge.mod <- poisGE(Total_crashes ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # ln.scale.formula = ~ lnaadt, # data=washington_roads[1:500,], # ndraws = 10, # max.iters = 500) # summary(poisge.mod) # # # # # ### Name: poisInvGaus # ### Title: Function for estimating a Poisson-Inverse-Gaussian regression # ### model # ### Aliases: poisInvGaus # # ### ** Examples # # # Poisson-Inverse-Gaussian Model # data("washington_roads") # washington_roads$AADTover10k <- # ifelse(washington_roads$AADT>10000,1,0) # create a dummy variable # # poisinvgaus.mod <- poisInvGaus(Total_crashes ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # data=washington_roads, # method="nm", # max.iters = 1000) # summary(poisinvgaus.mod) # # # # ### Name: poisLind # ### Title: Function for estimating a Poisson-Lindley regression model # ### Aliases: poisLind # # ### ** Examples # # # Poisson-Lindley Model # data("washington_roads") # washington_roads$AADTover10k <- # ifelse(washington_roads$AADT>10000,1,0) # create a dummy variable # poislind.mod <- poisLind( # Animal ~ lnaadt + lnlength + speed50 + ShouldWidth04 + AADTover10k, # data=washington_roads, # method="nm", # max.iters = 1000) # summary(poislind.mod) # # # # ### Name: poisLindGamma # ### Title: Function for estimating a Poisson-Lindley-Gamma (i.e., Negative # ### Binomial-Lindley) regression model # ### Aliases: poisLindGamma # # ### ** Examples # # # ## Poisson-Lindley-Gamma Model # data("washington_roads") # washington_roads$AADTover10k <- # ifelse(washington_roads$AADT>10000,1,0) # create a dummy variable # poislindgamma.mod <- poisLindGamma(Animal ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # data=washington_roads, # ndraws=10, # max.iters = 1000) # summary(poislindgamma.mod) # # # # ### Name: poisLindLnorm # ### Title: Function for estimating a Poisson-Lindley-Lognormal regression # ### model # ### Aliases: poisLindLnorm # # ### ** Examples # # # ## Poisson-Lindley-Lognormal Model # data("washington_roads") # washington_roads$AADTover10k <- # ifelse(washington_roads$AADT>10000,1,0) # create a dummy variable # poislindlnorm.mod <- poisLindLnorm(Animal ~ lnaadt + lnlength + speed50 # + ShouldWidth04 + AADTover10k, # data=washington_roads, # method="nm", # ndraws=10, # max.iters = 1000) # summary(poislindlnorm.mod) # # # # ### Name: poisLogn # ### Title: Poisson-Lognormal Regression # ### Aliases: poisLogn # # ### ** Examples # # # # Generalized Poisson-Lognormal # data("washington_roads") # washington_roads$AADTover10k <- ifelse(washington_roads$AADT>10000,1,0) # # poslogn.mod <- poisLogn(Total_crashes ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # ln.sigma.formula = ~ lnaadt + AADTover10k, # data=washington_roads, # ndraws = 10, # method = 'BHHH') # summary(poslogn.mod) # # # # # ### Name: Poisson-Generalized-Exponential # ### Title: Poisson-Generalized-Exponential Distribution # ### Aliases: Poisson-Generalized-Exponential dpge ppge qpge rpge # # ### ** Examples # # dpge(0, mean=0.75, shape=2, scale=1, ndraws=100) # ppge(c(0,1,2,3,4,5,6), mean=0.75, shape=2, scale=1, ndraws=100) # qpge(c(0.1,0.3,0.5,0.9,0.95), mean=0.75, shape=2, scale=1, ndraws=100) # rpge(30, mean=0.75, shape=2, scale=1, ndraws=100) # # # # # ### Name: Poisson-Inverse-Gaussian # ### Title: Poisson-Inverse-Gaussian Distribution # ### Aliases: Poisson-Inverse-Gaussian dpinvgaus ppinvgaus qpinvgaus # ### rpinvgaus # # ### ** Examples # # dpinvgaus(1, mu=0.75, eta=1) # ppinvgaus(c(0,1,2,3,5,7,9,10), mu=0.75, eta=3, form="Type 2") # qpinvgaus(c(0.1,0.3,0.5,0.9,0.95), mu=0.75, eta=0.5, form="Type 2") # rpinvgaus(30, mu=0.75, eta=1.5) # # dpinvgaus(1, mu=0.75, eta=1) # ppinvgaus(c(0,1,2,3,5,7,9,10), mu=0.75, eta=3, form="Type 2") # qpinvgaus(c(0.1,0.3,0.5,0.9,0.95), mu=0.75, eta=0.5, form="Type 2") # rpinvgaus(30, mu=0.75, eta=1.5) # # # # # ### Name: Poisson-Lindley-Lognormal # ### Title: Poisson-Lindley-Lognormal Distribution # ### Aliases: Poisson-Lindley-Lognormal dplindLnorm pplindLnorm qplindLnorm # ### rplindLnorm # # ### ** Examples # # dplindLnorm(0, mean=0.75, theta=7, sigma=2, ndraws=100) # pplindLnorm(c(0,1,2,3,5,7,9,10), mean=0.75, theta=7, sigma=2, ndraws=100) # qplindLnorm( # c(0.1,0.3,0.5,0.9,0.95), lambda=4.67, theta=7, sigma=2, ndraws=100) # rplindLnorm(30, mean=0.75, theta=7, sigma=2, ndraws=100) # # # # # ### Name: Poisson-Lindley # ### Title: Poisson-Lindley Distribution # ### Aliases: Poisson-Lindley dplind pplind qplind rplind # # ### ** Examples # # dplind(0, mean=0.75, theta=7) # pplind(c(0,1,2,3,5,7,9,10), mean=0.75, theta=7) # qplind(c(0.1,0.3,0.5,0.9,0.95), lambda=4.67, theta=7) # rplind(30, mean=0.75, theta=7) # # # # # ### Name: Poisson-Lognormal # ### Title: Poisson-Lognormal Distribution # ### Aliases: Poisson-Lognormal dpLnorm ppLnorm qpLnorm rpLnorm # # ### ** Examples # # dpLnorm(0, mean=0.75, sigma=2, ndraws=100) # ppLnorm(c(0,1,2,3,5,7,9,10), mean=0.75, sigma=2, ndraws=100) # qpLnorm(c(0.1,0.3,0.5,0.9,0.95), mean=0.75, sigma=2, ndraws=100) # rpLnorm(30, mean=0.75, sigma=2, ndraws=100) # # # # # ### Name: PoissonWeibull # ### Title: Poisson-Weibull Distribution Functions # ### Aliases: PoissonWeibull dpoisweibull ppoisweibull qpoisweibull # ### rpoisweibull # # ### ** Examples # # dpoisweibull(4, alpha = 1.5, beta = 0.5) # ppoisweibull(4, alpha = 1.5, beta = 0.5) # qpoisweibull(0.95, alpha = 1.5, beta = 0.5) # rpoisweibull(10, alpha = 1.5, beta = 0.5) # # # # # ### Name: pwiebreg # ### Title: Poisson-Weibull Regression with Optional Random Parameters # ### Aliases: pwiebreg # # ### ** Examples # # data("washington_roads") # pw_rp <- pwiebreg(Total_crashes ~ lnlength + lnaadt, # rpar_formula = ~ speed50, # alpha_formula = ~ lnlength, # beta_formula = ~ lnaadt, # data = washington_roads, # ndraws = 10, # correlated = FALSE) # print(summary(pw_rp)) # # # # # ### Name: regCompTest # ### Title: Compare Regression Models with Likelihood Ratio Test, AIC, and # ### BIC # ### Aliases: regCompTest # # ### ** Examples # # # # Comparing the NBP model with the NB2 model # data("washington_roads") # washington_roads$AADTover10k <- ifelse(washington_roads$AADT>10000,1,0) # # nbp.base <- nbg(Total_crashes ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # data=washington_roads, form = 'nbp', method = 'NM', # max.iters=3000) # comptests <- # regCompTest(nbp.base, washington_roads, basemodel="NB2", print=TRUE) # # # # # ### Name: rmse # ### Title: Calculate Root Mean Squared Error (RMSE) # ### Aliases: rmse # # ### ** Examples # # y <- c(1, 2, 3) # mu <- c(1.1, 1.9, 3.2) # rmse(y, mu) # # # # # ### Name: rpnb.predict # ### Title: Function for generating predictions based on the random # ### parameters negative binomial with multiple optional methods # ### Aliases: rpnb.predict # # ### ** Examples # # ## No test: # # ## Random Parameters Negative Binomial model (NB-2) # # data("washington_roads") # # nb2.rp <- rpnb(Total_crashes ~ - 1 + lnlength + lnaadt, # rpar_formula = ~ speed50, # data = washington_roads, # ndraws = 10, # correlated = TRUE, # form = 'nb2', # method = "bfgs", # print.level = 1) # # ## Exact Prediction # hist(rpnb.predict(nb2.rp, washington_roads)) # # ## Simulated Prediction # hist(rpnb.predict(nb2.rp, washington_roads, method="Simulated")) # # ## Individual-Specific Coefficient Based Prediction # hist(rpnb.predict(nb2.rp, washington_roads, method="Individual")) # ## End(No test) # # # # ### Name: rpnb # ### Title: Function for estimating a random parameter negative binomial # ### with the ability to specify if the NB-1, NB-2, or NB-P should be used # ### Aliases: rpnb # # ### ** Examples # # ## Not run: # ##D ## Random Parameters Negative Binomial model (NB-2) # ##D data("washington_roads") # ##D nb2.rp <- rpnb(Total_crashes ~ - 1 + lnlength + lnaadt, # ##D rpar_formula = ~ speed50, # ##D data = washington_roads, # ##D ndraws = 10, # ##D correlated = TRUE, # ##D form = 'nb2', # ##D method = "nr", # ##D print.level = 1) # ##D # ##D summary(nb2.rp) # ## End(Not run) # # # # ### Name: rppoisson # ### Title: Random Parameters Poisson Model # ### Aliases: rppoisson # # ### ** Examples # # ## Not run: # ##D data("washington_roads") # ##D poisson_rp <- rppoisson(Total_crashes ~ lnlength + lnaadt, # ##D rpar_formula = ~ speed50, # ##D data = washington_roads, # ##D ndraws = 10, # ##D correlated = FALSE) # ##D print(summary(poisson_rp)) # ## End(Not run) # # # # ### Name: Sichel-Distribution # ### Title: Sichel Distribution # ### Aliases: Sichel-Distribution dsichel psichel qsichel rsichel # # ### ** Examples # # dsichel(1, mu=0.75, sigma=1, gamma=-3) # psichel(c(0,1,2,3,5,7,9,10), mu=0.75, sigma=2, gamma=3) # qsichel(c(0.1,0.3,0.5,0.9,0.95), mu=0.75, sigma=1, gamma=15) # rsichel(30, mu=0.75, sigma=0.5, gamma=1) # # # # # ### Name: sichel # ### Title: Function for estimating a Sichel regression model # ### Aliases: sichel # # ### ** Examples # # # # Sichel Model # data("washington_roads") # # sichel.mod <- sichel(Total_crashes ~ lnaadt + lnlength, # data=washington_roads, # method="NM", # max.iters = 1000) # summary(sichel.mod) # # # # ### Name: summary.boot # ### Title: Custom summary method for models with bootstrapped standard # ### errors # ### Aliases: summary.boot # # ### ** Examples # # # Poisson-Weibull # pw_rp <- pwiebreg(Total_crashes ~ lnlength + lnaadt, # data = washington_roads, # ndraws = 10, # bootstraps = 10) # summary.boot(pw_rp) # # # # # ### Name: summary.maxLik # ### Title: Custom summary method for maxLik objects # ### Aliases: summary.maxLik # # ### ** Examples # # # NB2 Model # data("washington_roads") # washington_roads$AADTover10k <- ifelse(washington_roads$AADT>10000,1,0) # # nb2.base <- nbg(Total_crashes ~ lnaadt + lnlength + speed50 + # ShouldWidth04 + AADTover10k, # data=washington_roads, form = 'nb2', # method = 'NR', # max.iters=3000) # # summary.maxLik(nb2.base) # # # # # ### Name: Triangular # ### Title: Triangle Distribution # ### Aliases: Triangular dtri ptri qtri rtri # # ### ** Examples # # dtri(4, mode=8, upper=13, lower=1) # ptri(c(0, 1, 2, 3, 5, 7, 9, 10), mode = 3, upper=9, lower = 1) # qtri(c(0.1, 0.3, 0.5, 0.9, 0.95), mode = 3, upper = 9, lower = 1) # rtri(30, mode = 5, sigma = 3)