R Under development (unstable) (2024-07-10 r86888 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(fitdistrplus) Loading required package: MASS Loading required package: survival > > # ?ppcomp > > visualize <- FALSE # TRUE for manual tests with visualization of results > nsample <- 1000 > nsample <- 10 > > # (1) Plot various distributions fitted to serving size data > # > data(groundbeef) > serving <- groundbeef$serving > fitW <- fitdist(serving, "weibull") > fitln <- fitdist(serving, "lnorm") > fitg <- fitdist(serving, "gamma") > > # sanity checks > try(ppcomp("list(fitW, fitln, fitg)"), silent = TRUE) > try(ppcomp(list(fitW, fitln, fitg, a = 1)), silent = TRUE) > > # real call > res <- ppcomp(list(fitW, fitln, fitg)) > str(res) List of 2 $ obs : num [1:254] 0.00197 0.00591 0.00984 0.01378 0.01772 ... $ probabilities: num [1:254, 1:3] 0.00966 0.01309 0.03048 0.0432 0.0432 ... > > ppcomp(list(fitW, fitln, fitg), legendtext = c("Weibull", "lognormal", "gamma"), + main="ground beef fits", xlab="Theo.", + ylab="serving sizes (g)", xlim = c(0, 1/2)) > > ppcomp(list(fitW, fitln, fitg), legendtext=c("Weibull","lognormal","gamma"), + main="ground beef fits", xlab="Theo.", + ylab="serving sizes (g)", xlogscale=TRUE, line01=FALSE) Warning message: In ppcomp(list(fitW, fitln, fitg), legendtext = c("Weibull", "lognormal", : As a P-P plot should use the same scale on x and y axes, both or none of the axes should be put in a logarithmic scale. > > ppcomp(list(fitW, fitln, fitg), legendtext=c("Weibull","lognormal","gamma"), + main="ground beef fits", xlab="Theo.", + ylab="serving sizes (g)", ylogscale=TRUE, line01=FALSE) Warning message: In ppcomp(list(fitW, fitln, fitg), legendtext = c("Weibull", "lognormal", : As a P-P plot should use the same scale on x and y axes, both or none of the axes should be put in a logarithmic scale. > > ppcomp(list(fitW, fitln, fitg), legendtext=c("Weibull","lognormal","gamma"), + main="ground beef fits", ylim=c(1e-3, 1), xlim=c(1e-3, 1), + fitpch=c("+", "-", ".")) > > if (requireNamespace ("ggplot2", quietly = TRUE)) { + ppcomp(list(fitW, fitln, fitg), plotstyle = "ggplot") + } > > > if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) { + ppcomp(list(fitW, fitln, fitg), legendtext=c("Weibull","lognormal","gamma"), + main="ground beef fits", xlab="Theo.", + ylab="serving sizes (g)", xlim = c(0, 1/2), plotstyle = "ggplot") + + ppcomp(list(fitW, fitln, fitg), legendtext=c("Weibull","lognormal","gamma"), + main="ground beef fits", xlab="Theo.", + ylab="serving sizes (g)", xlogscale=TRUE, line01=FALSE, plotstyle = "ggplot") + + ppcomp(list(fitW, fitln, fitg), legendtext=c("Weibull","lognormal","gamma"), + main="ground beef fits", xlab="Theo.", + ylab="serving sizes (g)", ylogscale=TRUE, line01=FALSE, plotstyle = "ggplot") + + ppcomp(list(fitW, fitln, fitg), legendtext=c("Weibull","lognormal","gamma"), + main="ground beef fits", ylim=c(1e-3, 1), xlim=c(1e-3, 1), + fitpch=c("+", "-", "."), plotstyle = "ggplot") + } > > > > # (2) Plot lognormal distributions fitted by > # maximum goodness-of-fit estimation > # using various distances (data plotted in log scale) > # > data(endosulfan) > ATV <-subset(endosulfan, group == "NonArthroInvert")$ATV > flnMGEKS <- fitdist(ATV,"lnorm",method="mge",gof="KS") > flnMGEAD <- fitdist(ATV,"lnorm",method="mge",gof="AD") > flnMGEADL <- fitdist(ATV,"lnorm",method="mge",gof="ADL") > flnMGEAD2L <- fitdist(ATV,"lnorm",method="mge",gof="AD2L") > llfit <- list(flnMGEKS, flnMGEAD, flnMGEADL, flnMGEAD2L) > > ppcomp(llfit, main="fits of a lognormal dist. using various GOF dist.") > > ppcomp(llfit, xlegend="topleft", + xlogscale=TRUE, main="fits of a lognormal dist. using various GOF dist.", + legendtext=c("MGE KS","MGE AD","MGE ADL","MGE AD2L")) Warning message: In ppcomp(llfit, xlegend = "topleft", xlogscale = TRUE, main = "fits of a lognormal dist. using various GOF dist.", : As a P-P plot should use the same scale on x and y axes, both or none of the axes should be put in a logarithmic scale. > > ppcomp(llfit, xlegend="topleft", + xlogscale=TRUE, main="fits of a lognormal dist. using various GOF dist.", + legendtext=c("MGE KS","MGE AD","MGE ADL","MGE AD2L"), + fitcol=c("black", "darkgreen", "yellowgreen", "yellow2")) Warning message: In ppcomp(llfit, xlegend = "topleft", xlogscale = TRUE, main = "fits of a lognormal dist. using various GOF dist.", : As a P-P plot should use the same scale on x and y axes, both or none of the axes should be put in a logarithmic scale. > > ppcomp(llfit, ynoise=FALSE, xlogscale=TRUE, ylogscale=TRUE, xlim=c(1e-3,1), ylim=c(1e-3,1)) > > ppcomp(flnMGEKS) > > if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) { + ppcomp(llfit, main="fits of a lognormal dist. using various GOF dist.", plotstyle = "ggplot") + + ppcomp(llfit, xlegend="topleft", + xlogscale=TRUE, main="fits of a lognormal dist. using various GOF dist.", + legendtext=c("MGE KS","MGE AD","MGE ADL","MGE AD2L"), plotstyle = "ggplot") + + ppcomp(llfit, xlegend="topleft", + xlogscale=TRUE, main="fits of a lognormal dist. using various GOF dist.", + legendtext=c("MGE KS","MGE AD","MGE ADL","MGE AD2L"), + fitcol=c("black", "darkgreen", "yellowgreen", "yellow2"), plotstyle = "ggplot") + + ppcomp(llfit, ynoise=FALSE, xlogscale=TRUE, ylogscale=TRUE, xlim=c(1e-3,1), ylim=c(1e-3,1), plotstyle = "ggplot") + + ppcomp(flnMGEKS, plotstyle = "ggplot") + } > > > > # (3) Plot lognormal distributions fitted by > # maximum goodness-of-fit estimation > # using various distances (data plotted in log scale) > # > if (visualize) + { + x1 <- c(6.4,13.3,4.1,1.3,14.1,10.6,9.9,9.6,15.3,22.1,13.4,13.2,8.4,6.3,8.9,5.2,10.9,14.4) + n1 <- length(x1) + + dgumbel <- function(x,a,b) 1/b*exp((a-x)/b)*exp(-exp((a-x)/b)) + pgumbel <- function(q,a,b) exp(-exp((a-q)/b)) + + f1 <- mledist(x1, "norm") + f2 <- mledist(x1, "gumbel", start = list(a = 10, b = 5)) + f3 <- mledist(x1, "exp") + + xx1 <- pnorm(sort(x1), f1$estimate[1], f1$estimate[2]) + xx2 <- pgumbel(sort(x1), f2$estimate[1], f2$estimate[2]) + xx3 <- pexp(sort(x1), f3$estimate[1]) + xlim <- c(xx1, xx2, xx3) + xlim <- range(xlim[which(is.finite(xlim))]) + + # graph 1 + plot(xx1, 1:n1/n1, col = "red", xlim = xlim) + points(xx2, 1:n1/n1, col = "green") + points(xx3, 1:n1/n1, col = "blue") + legend("bottomright", pch = 1, leg = c("Normal","Gumbel","Exp"), col = c("red","green","blue")) + + # graph 2 + f1 <- fitdist(x1,"norm") + f2 <- fitdist(x1,"gumbel",start=list(a=10,b=5)) + f3 <- fitdist(x1, "exp") + ppcomp(list(f1, f2, f3), fitcol=c("red","green","blue"), ynoise = FALSE, legendtext = c("Normal","Gumbel","Exp")) + + # graph 3 + if (requireNamespace ("ggplot2", quietly = TRUE)) { + ppcomp(list(f1, f2, f3), fitcol=c("red","green","blue"), ynoise = FALSE, legendtext = c("Normal","Gumbel","Exp"), plotstyle = "gg") + } + } > > > # (4) normal mixture > # > > #mixture of two normal distributions > #density > dnorm2 <- function(x, poid, m1, s1, m2, s2) + poid*dnorm(x, m1, s1) + (1-poid)*dnorm(x, m2, s2) > #numerical approximate quantile function > qnorm2 <- function(p, poid, m1, s1, m2, s2) + { + L2 <- function(x, prob) + (prob - pnorm2(x, poid, m1, s1, m2, s2))^2 + sapply(p, function(pr) optimize(L2, c(-1000, 1000), prob=pr)$minimum) + } > #distribution function > pnorm2 <- function(q, poid, m1, s1, m2, s2) + poid*pnorm(q, m1, s1) + (1-poid)*pnorm(q, m2, s2) > > > #basic normal distribution > set.seed(1234) > x2 <- c(rnorm(nsample, 5), rnorm(nsample, 10)) > #MLE fit > fit1 <- fitdist(x2, "norm2", "mle", start=list(poid=1/3, m1=4, s1=2, m2=8, s2=2), + lower=c(0, 0, 0, 0, 0)) Warning messages: 1: In cov2cor(varcovar) : diag(V) had non-positive or NA entries; the non-finite result may be dubious 2: In sqrt(diag(varcovar)) : NaNs produced > fit2 <- fitdist(x2, "norm2", "qme", probs=c(1/6, 1/4, 1/3, 1/2, 2/3), + start=list(poid=1/3, m1=4, s1=2, m2=8, s2=2), + lower=c(0, 0, 0, 0, 0), upper=c(1/2, Inf, Inf, Inf, Inf)) > fit3 <- fitdist(x2, "norm2", "mge", gof="AD", + start=list(poid=1/3, m1=4, s1=2, m2=8, s2=2), + lower=c(0, 0, 0, 0, 0), upper=c(1/2, Inf, Inf, Inf, Inf)) > > ppcomp(list(fit1, fit2, fit3), fitpch=rep(".", 3), fitcol=c("green", "red", "blue")) > > if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) { + ppcomp(list(fit1, fit2, fit3), fitpch=rep(".", 3), fitcol=c("green", "red", "blue"), plotstyle = "gg") + } > > # (5) large data > # > if (visualize) + { + n <- 2e4 + x <- rlnorm(n) + f1 <- fitdist(x, "lnorm") + f2 <- fitdist(x, "exp") + + ppcomp(list(f1, f2), fitpch=3) + ppcomp(list(f1, f2), fitlwd=2) + + if (requireNamespace ("ggplot2", quietly = TRUE)) { + ppcomp(list(f1, f2), fitpch=3, plotstyle = "ggplot") + ppcomp(list(f1, f2), fitlwd=2, plotstyle = "ggplot") + } + + } > > > # (6) test legend labels > # > if (visualize) + { + serving <- groundbeef$serving + fitW <- fitdist(serving,"weibull") + fitW2 <- fitdist(serving,"weibull", method="qme", probs=c(1/3,2/3)) + fitW3 <- fitdist(serving,"weibull", method="qme", probs=c(1/2,2/3)) + fitln <- fitdist(serving,"lnorm") + fitg <- fitdist(serving,"gamma") + + ppcomp(list(fitW, fitln, fitg)) #distrib + ppcomp(list(fitW, fitW2, fitln, fitg)) #distrib+method + ppcomp(list(fitW, fitW2, fitW3, fitln, fitg)) #distrib+method+num + if (requireNamespace ("ggplot2", quietly = TRUE)) + ppcomp(list(fitW, fitW2, fitW3, fitln, fitg), plotstyle = "ggplot") #distrib+method+num + + } > > > > proc.time() user system elapsed 2.89 0.51 3.37