R Under development (unstable) (2024-07-10 r86888 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(fitdistrplus) Loading required package: MASS Loading required package: survival > > nsample <- 10 > > # (1) Fit of a Weibull distribution to serving size data by maximum > # goodness-of-fit estimation using all the distances available > # > > data(groundbeef) > serving <- groundbeef$serving > mgedist(serving, "weibull", gof="CvM") $estimate shape scale 2.093204 82.660014 $convergence [1] 0 $value [1] 0.6556672 $hessian shape scale shape 4.05295367 0.09244476 scale 0.09244476 0.02418777 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 65 NA $optim.message NULL $loglik [1] -1255.623 $gof [1] "CvM" > mgedist(serving, "weibull", gof="CvM", silent = FALSE) $estimate shape scale 2.093204 82.660014 $convergence [1] 0 $value [1] 0.6556672 $hessian shape scale shape 4.05295367 0.09244476 scale 0.09244476 0.02418777 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 65 NA $optim.message NULL $loglik [1] -1255.623 $gof [1] "CvM" Warning messages: 1: In pweibull(c(10, 11.5, 17, 20, 20, 20, 20, 20, 20, 20, 20, 24, : NaNs produced 2: In pweibull(c(10, 11.5, 17, 20, 20, 20, 20, 20, 20, 20, 20, 24, : NaNs produced > mgedist(serving, "weibull", gof="KS") $estimate shape scale 2.065634 81.450487 $convergence [1] 0 $value [1] 0.112861 $hessian shape scale shape 122.668263 6.509057 scale 6.509057 7.599584 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 127 NA $optim.message NULL $loglik [1] -1255.975 $gof [1] "KS" > mgedist(serving, "weibull", gof="AD") $estimate shape scale 2.125473 82.890260 $convergence [1] 0 $value [1] 3.501035 $hessian shape scale shape 29.4165108 0.1823375 scale 0.1823375 0.1354409 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 63 NA $optim.message NULL $loglik [1] -1255.392 $gof [1] "AD" > mgedist(serving, "weibull", gof="ADR") $estimate shape scale 2.072087 82.761868 $convergence [1] 0 $value [1] 1.610479 $hessian shape scale shape 13.5240921 -0.33242262 scale -0.3324226 0.07977375 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 65 NA $optim.message NULL $loglik [1] -1255.836 $gof [1] "ADR" > mgedist(serving, "weibull", gof="ADL") $estimate shape scale 2.197498 82.016005 $convergence [1] 0 $value [1] 1.845939 $hessian shape scale shape 15.3272022 0.54407117 scale 0.5440712 0.05549883 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 65 NA $optim.message NULL $loglik [1] -1255.415 $gof [1] "ADL" > mgedist(serving, "weibull", gof="AD2R") $estimate shape scale 1.90328 81.33464 $convergence [1] 0 $value [1] 11.56415 $hessian shape scale shape 334.61081 -10.4227495 scale -10.42275 0.5223167 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 67 NA $optim.message NULL $loglik [1] -1259.112 $gof [1] "AD2R" > mgedist(serving, "weibull", gof="AD2L") $estimate shape scale 2.483836 78.252113 $convergence [1] 0 $value [1] 9.786977 $hessian shape scale shape 113.511932 4.1108355 scale 4.110836 0.2341312 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 69 NA $optim.message NULL $loglik [1] -1265.933 $gof [1] "AD2L" > mgedist(serving, "weibull", gof="AD2") $estimate shape scale 2.081168 85.281194 $convergence [1] 0 $value [1] 26.95166 $hessian shape scale shape 534.9606 -10.5940982 scale -10.5941 0.7606462 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 67 NA $optim.message NULL $loglik [1] -1256.313 $gof [1] "AD2" > > # (2) Fit of a uniform distribution using Cramer-von Mises or > # Kolmogorov-Smirnov distance > # > > set.seed(1234) > u <- runif(nsample, min=5, max=10) > mgedist(u, "unif", gof="CvM") $estimate min max 5.151281 9.808278 $convergence [1] 0 $value [1] 0.1217292 $hessian min max min 0.2131728 0.1603053 max 0.1603053 0.2961833 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 53 NA $optim.message NULL $loglik [1] -Inf $gof [1] "CvM" > mgedist(u, "unif", gof="KS") $estimate min max 5.840091 9.452868 $convergence [1] 0 $value [1] 0.2106888 $hessian min max min 179.94486 55.35421 max 55.35421 179.91068 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 165 NA $optim.message NULL $loglik [1] -Inf $gof [1] "KS" > > # (3) Fit of a triangular distribution using Cramer-von Mises or > # Kolmogorov-Smirnov distance > # > require(mc2d) Loading required package: mc2d Loading required package: mvtnorm Attaching package: 'mc2d' The following objects are masked from 'package:base': pmax, pmin > set.seed(1234) > t <- rtriang(nsample, min=5, mode=6, max=10) > mgedist(t, "triang", start = list(min=4, mode=6,max=9), gof="CvM") $estimate min mode max 4.602048 7.367066 8.682229 $convergence [1] 0 $value [1] 0.08579645 $hessian min mode max min 0.1914605 0.2739648 0.1892873 mode 0.2739648 0.7323464 0.4060730 max 0.1892873 0.4060730 0.2910040 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 180 NA $optim.message NULL $loglik [1] -11.84833 $gof [1] "CvM" Warning message: In checkparamlist(arg_startfix$start.arg, arg_startfix$fix.arg, : Some parameter names have no starting/fixed value but have a default value: mean. > mgedist(t, "triang", start = list(min=4, mode=6,max=9), gof="KS") $estimate min mode max 5.191300 7.414283 8.306100 $convergence [1] 0 $value [1] 0.1853719 $hessian min mode max min 148.15115 110.9594 93.74732 mode 110.95941 292.0984 208.67195 max 93.74732 208.6720 208.66467 $optim.function [1] "optim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 298 NA $optim.message NULL $loglik [1] -Inf $gof [1] "KS" Warning message: In checkparamlist(arg_startfix$start.arg, arg_startfix$fix.arg, : Some parameter names have no starting/fixed value but have a default value: mean. > > > # (4) scaling problem > # the simulated dataset (below) has particularly small values, hence without scaling (10^0), > # the optimization raises an error. The for loop shows how scaling by 10^i > # for i=1,...,6 makes the fitting procedure work correctly. > if(FALSE) + { + set.seed(1234) + x2 <- rnorm(nsample, 1e-4, 2e-4) + for(i in 6:0) + cat(i, try(mgedist(x2*10^i,"cauchy")$estimate, silent=TRUE), "\n") + } > > # (5) scaling problem > # > if(FALSE) + { + x <- c(-0.00707717, -0.000947418, -0.00189753, + -0.000474947, -0.00190205, -0.000476077, 0.00237812, 0.000949668, + 0.000474496, 0.00284226, -0.000473149, -0.000473373, 0, 0, 0.00283688, + -0.0037843, -0.0047506, -0.00238379, -0.00286807, 0.000478583, + 0.000478354, -0.00143575, 0.00143575, 0.00238835, 0.0042847, + 0.00237248, -0.00142281, -0.00142484, 0, 0.00142484, 0.000948767, + 0.00378609, -0.000472478, 0.000472478, -0.0014181, 0, -0.000946522, + -0.00284495, 0, 0.00331832, 0.00283554, 0.00141476, -0.00141476, + -0.00188947, 0.00141743, -0.00236351, 0.00236351, 0.00235794, + 0.00235239, -0.000940292, -0.0014121, -0.00283019, 0.000472255, + 0.000472032, 0.000471809, -0.0014161, 0.0014161, -0.000943842, + 0.000472032, -0.000944287, -0.00094518, -0.00189304, -0.000473821, + -0.000474046, 0.00331361, -0.000472701, -0.000946074, 0.00141878, + -0.000945627, -0.00189394, -0.00189753, -0.0057143, -0.00143369, + -0.00383326, 0.00143919, 0.000479272, -0.00191847, -0.000480192, + 0.000960154, 0.000479731, 0, 0.000479501, 0.000958313, -0.00383878, + -0.00240674, 0.000963391, 0.000962464, -0.00192586, 0.000481812, + -0.00241138, -0.00144963) + + + #only i == 0, no scaling, should not converge. + for(i in 6:0) + cat(i, try(mgedist(x*10^i,"cauchy")$estimate, silent=TRUE), "\n") + } > > > # (6) test error messages > # > > dnorm2 <- pnorm2 <- function(x, a) + "NA" > x <- rexp(10) > > #should get a one-line error > res <- mgedist(x, "norm2", start=list(a=1)) > #as in > attr(try(log("a"), silent=TRUE), "condition") > > > try(mgedist(c(serving, "a"), "gamma")) Error in mgedist(c(serving, "a"), "gamma") : data must be a numeric vector of length greater than 1 for non censored data or a dataframe with two columns named left and right and more than one line for censored data > try(mgedist(c(serving, NA), "gamma")) Error in checkUncensoredNAInfNan(data) : data contain NA values. > try(mgedist(c(serving, Inf), "gamma")) Error in checkUncensoredNAInfNan(data) : data contain Inf (infinite) values. > try(mgedist(c(serving, -Inf), "gamma")) Error in checkUncensoredNAInfNan(data) : data contain Inf (infinite) values. > try(mgedist(c(serving, NaN), "gamma")) Error in checkUncensoredNAInfNan(data) : data contain NaN (not a numeric) values. > > > # (7) test the component optim.message > x <- rnorm(1000) > #change parameter to obtain unsuccessful convergence > mgedist(x, "norm", control=list(maxit=2), start=list(mean=1e5, sd=1), optim.method="L-BFGS-B", lower=0) $estimate mean sd 1e+05 1e+00 $convergence [1] 0 $value [1] 333.3333 $hessian mean sd mean 0 0 sd 0 0 $optim.function [1] "optim" $optim.method [1] "L-BFGS-B" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 1 1 $optim.message [1] "CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL" $loglik [1] -Inf $gof [1] "CvM" > > # (8) test bounds > x <- rnorm(1000) > mgedist(x, "norm", optim.method="L-BFGS-B", lower=c(-Inf, 0)) #optim and L-BFGS-B $estimate mean sd 0.01134416 0.97945793 $convergence [1] 0 $value [1] 0.02003669 $hessian mean sd mean 191.57400735 -0.05237777 sd -0.05237777 62.19267021 $optim.function [1] "optim" $optim.method [1] "L-BFGS-B" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 8 8 $optim.message [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH" $loglik [1] -1399.894 $gof [1] "CvM" > mgedist(x, "norm", optim.method="Nelder", lower=c(-Inf, 0)) $estimate mean sd 0.01134315 0.97945779 $convergence [1] 0 $value [1] 0.02003669 $hessian NULL $optim.function [1] "constrOptim" $optim.method [1] "Nelder-Mead" $fix.arg NULL $fix.arg.fun NULL $weights NULL $counts function gradient 59 NA $optim.message NULL $loglik [1] -1399.894 $gof [1] "CvM" > > > > proc.time() user system elapsed 2.92 0.31 3.23