library(fitdistrplus) nbboot <- 100 nbboot <- 10 nsample <- 100 nsample <- 10 visualize <- FALSE # TRUE for manual tests with visualization of results #### sanity check -- data #### try(fitdist(c(serving, "a"), "gamma")) try(fitdist(c(serving, NA), "gamma")) try(fitdist(c(serving, Inf), "gamma")) try(fitdist(c(serving, -Inf), "gamma")) try(fitdist(c(serving, NaN), "gamma")) #### sanity check -- distr #### try(fitdist(serving, "toto")) #### sanity check -- method #### try(fitdist(serving, "gamma", method="toto")) try(fitdist(serving, "gamma", method=1)) #### sanity check -- start #### try(fitdist(serving, "gamma", start=list("a"=1, b=2))) #### sanity check -- fix.arg #### try(fitdist(serving, "gamma", fix.arg=list("a"=1, b=2))) try(fitdist(serving, "gamma", fix.arg=list("shape"=1, rate=2))) #### sanity check -- discrete #### try(fitdist(serving, "gamma", discrete=3)) #### sanity check -- keepdata #### try(fitdist(serving, "gamma", keepdata=3)) try(fitdist(serving, "gamma", keepdata=TRUE, keepdata.nb = 1)) #### sanity check -- calcvcov #### try(fitdist(serving, "gamma", calcvcov=3)) #### check the warning messages when using weights in the fit followed by functions #### # that do not yet take weights into account # with an example to be used later to see if weights are well taken into account # if(visualize) { x3 <- rnorm(100) # this sample size must be fixed here (see next lines, 50+50) x3 <- sort(x3) (f <- fitdist(x3, "norm", method="mle", weights= c(rep(1, 50), rep(2, 50)))) try(plot(f)) try(cdfcomp(f)) (f2 <- fitdist(x3, "logis", method="mle", weights= c(rep(1, 50), rep(2, 50)))) try(cdfcomp(list(f,f2))) try(denscomp(f)) try(denscomp(list(f,f2))) try(ppcomp(f)) try(ppcomp(list(f,f2))) try(qqcomp(f)) try(qqcomp(list(f,f2))) try(gofstat(f)) try(gofstat(list(f,f2))) try(bootdist(f)) }