# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) # tests of predictSE # against direct linear algebra #options( echo=FALSE) x0<- expand.grid( c(-8,-4,0,20,30), c(10,8,4,0)) out<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50) # direct calculation Krig.Amatrix( out, x=x0)-> A test.for.zero( A%*%ChicagoO3$y, predict( out, x0),tag="Amatrix vs. predict") Sigma<- out$sigmahat*Exp.cov( ChicagoO3$x, ChicagoO3$x, aRange=50) S0<- out$sigmahat*c(Exp.cov( x0, x0, aRange=50)) S1<- out$sigmahat*Exp.cov( out$x, x0, aRange=50) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A) # #compare to # diagonal elements test2<- predictSE( out, x= x0) test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE") out2<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50, lambda=out$lambda) test2<- predictSE( out2, x= x0) test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE fixed ") test<- predictSE( out, x= x0, cov=TRUE) test.for.zero( look, test,tag="Full covariance predictSE") # simulation based. set.seed( 333) sim.Krig( out, x0,M=4e3)-> test # columns are the realizations rows are locations var(t(test))-> look predictSE( out, x=x0)-> test2 mean( diag( look)/ test2**2)-> look2 test.for.zero(look2, 1.0, tol=1.5e-2, tag="Marginal standard Cond. Sim.") predictSE( out, x=x0, cov=TRUE)-> test2 # multiply simulated values by inverse square root of covariance # to make them white eigen( test2, symmetric=TRUE)-> hold hold$vectors%*% diag( 1/sqrt( hold$values))%*% t( hold$vectors)-> hold cor(t(test)%*% hold)-> hold2 # off diagonal elements of correlations -- expected values are zero. abs(hold2[ col(hold2)> row( hold2)])-> hold3 test.for.zero( mean(hold3), 0, relative=FALSE, tol=.02, tag="Full covariance standard Cond. Sim.") # test of A matrix # # first create and check a gridded test case. data( ozone2) as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20, na.rm=TRUE)-> dtemp # # A useful disctrtized version of ozone2 data x<- dtemp$xd y<- dtemp$z[ dtemp$ind] weights<- dtemp$weights[ dtemp$ind] Krig( x, y, Covariance="Matern", aRange=1.0, smoothness=1.0, weights=weights) -> out set.seed(234) ind0<- cbind( sample( 1:20, 5), sample( 1:24, 5)) x0<- cbind( dtemp$x[ind0[,1]], dtemp$y[ind0[,2]]) # an inline check plot(out$x, cex=2); points( x0, col="red", pch="+",cex=2) # direct calculation as backup ( also checks weighted case) Krig.Amatrix( out, x=x0)-> A test.for.zero( A%*%out$yM, predict( out, x0),tag="Amatrix vs. predict") Sigma<- out$sigmahat*stationary.cov( out$xM, out$xM, aRange=1.0,smoothness=1.0, Covariance="Matern") S0<- out$sigmahat*stationary.cov( x0, x0, aRange=1.0,smoothness=1.0, Covariance="Matern") S1<- out$sigmahat*stationary.cov( out$xM, x0, aRange=1.0,smoothness=1.0, Covariance="Matern") #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM) )%*% t(A) test<- predictSE( out, x0, cov=TRUE) test.for.zero( c( look), c( test), tag="Weighted case and exact for ozone2 full cov", tol=1e-8) cat("all done testing predictSE.Krig ", fill=TRUE) options( echo=TRUE)