# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) # tests of predict.se # using approximations for conditional simulation on a grid. # options( echo=FALSE) test.for.zero.flag<-1 long.test.flag<- FALSE data( ozone2) as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20, na.rm=TRUE)-> dtemp # # A useful discretized version of ozone2 data x<- cbind(dtemp$x[dtemp$ind[,1]], dtemp$y[dtemp$ind[,2]]) y<- dtemp$z[ dtemp$ind] weights<- dtemp$weights[ dtemp$ind] Krig( x, y, Covariance="Matern", aRange=1.0, smoothness=1.0, weights=weights) -> out if(long.test.flag){ # the grid ... glist<- list( x= dtemp$x, y=dtemp$y) set.seed( 233) sim.Krig.approx( out, grid= glist, M=200, extrap=TRUE)-> look predict.surface.se( out, grid=glist, extrap=TRUE)-> test look2<- matrix( NA, 20,24) for( k in 1:24){ for ( j in 1:20){ look2[j,k] <- sqrt(var( look$z[j,k,], na.rm=TRUE)) } } test.for.zero( mean( abs(look2- test$z)/test$z), 0, relative=FALSE, tol=.05, tag="Conditional simulation marginal se for grid") # # test for covariances ind0<- expand.grid( c(1,4,5,10), c(3,4,5,10, 15)) x0<- cbind( glist$x[ind0[,1]], glist$y[ind0[,2]]) look2<- matrix( NA, 200,20) for( k in 1:20){ look2[,k] <- look$z[ ind0[k,1], ind0[k,2],]} predict.se( out, x0, cov=TRUE)-> test2 ds<- 1/sqrt(diag(test2)) test3<- diag(ds)%*% test2 %*% diag(ds) #check plot( diag( test2), diag( var( look2))) # Another plot to look at plot( c(test3), c(cor(look2))) hold<-cor(look2) upper<- col(hold)> row( hold) dd<- (c(hold)- c(test3))[upper] test.for.zero( mean( abs(dd)) ,0, relative=FALSE, tol=.05, tag="Conditional simulation correlations for grid (RMSE) ") } # end long test block cat( "all done with grid based se tests", fill=TRUE) options( echo=TRUE)