R Under development (unstable) (2024-06-26 r86840 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > > # tests of predictSE > # against direct linear algebra > > #options( echo=FALSE) > > > > x0<- expand.grid( c(-8,-4,0,20,30), c(10,8,4,0)) > > > out<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50) > > > # direct calculation > Krig.Amatrix( out, x=x0)-> A > test.for.zero( A%*%ChicagoO3$y, predict( out, x0),tag="Amatrix vs. predict") Testing: Amatrix vs. predict PASSED test at tolerance 1e-08 > > Sigma<- out$sigmahat*Exp.cov( ChicagoO3$x, ChicagoO3$x, aRange=50) > S0<- out$sigmahat*c(Exp.cov( x0, x0, aRange=50)) > S1<- out$sigmahat*Exp.cov( out$x, x0, aRange=50) > > #yhat= Ay > #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) > > look<- S0 - t(S1)%*% t(A) - A%*%S1 + + A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A) > # > #compare to > # diagonal elements > > > test2<- predictSE( out, x= x0) > test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE") Testing: Marginal predictSE PASSED test at tolerance 1e-08 > > out2<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50, + lambda=out$lambda) > > test2<- predictSE( out2, x= x0) > test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE fixed ") Testing: Marginal predictSE fixed PASSED test at tolerance 1e-08 > > test<- predictSE( out, x= x0, cov=TRUE) > test.for.zero( look, test,tag="Full covariance predictSE") Testing: Full covariance predictSE PASSED test at tolerance 1e-08 > > > # simulation based. > > set.seed( 333) > > sim.Krig( out, x0,M=4e3)-> test > # columns are the realizations rows are locations > > var(t(test))-> look > > predictSE( out, x=x0)-> test2 > mean( diag( look)/ test2**2)-> look2 > test.for.zero(look2, 1.0, tol=1.5e-2, tag="Marginal standard Cond. Sim.") Testing: Marginal standard Cond. Sim. PASSED test at tolerance 0.015 > > predictSE( out, x=x0, cov=TRUE)-> test2 > > # multiply simulated values by inverse square root of covariance > # to make them white > > eigen( test2, symmetric=TRUE)-> hold > hold$vectors%*% diag( 1/sqrt( hold$values))%*% t( hold$vectors)-> hold > cor(t(test)%*% hold)-> hold2 > # off diagonal elements of correlations -- expected values are zero. > > abs(hold2[ col(hold2)> row( hold2)])-> hold3 > > test.for.zero( mean(hold3), 0, relative=FALSE, tol=.02, + tag="Full covariance standard Cond. Sim.") Testing: Full covariance standard Cond. Sim. PASSED test at tolerance 0.02 > > > # test of A matrix > # > # first create and check a gridded test case. > > > data( ozone2) > as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20, + na.rm=TRUE)-> dtemp > # > # A useful disctrtized version of ozone2 data > > x<- dtemp$xd > y<- dtemp$z[ dtemp$ind] > weights<- dtemp$weights[ dtemp$ind] > > Krig( x, y, Covariance="Matern", + aRange=1.0, smoothness=1.0, weights=weights) -> out > > > > set.seed(234) > ind0<- cbind( sample( 1:20, 5), sample( 1:24, 5)) > > x0<- cbind( dtemp$x[ind0[,1]], dtemp$y[ind0[,2]]) > > # an inline check plot(out$x, cex=2); points( x0, col="red", pch="+",cex=2) > > # direct calculation as backup ( also checks weighted case) > > Krig.Amatrix( out, x=x0)-> A > test.for.zero( A%*%out$yM, predict( out, x0),tag="Amatrix vs. predict") Testing: Amatrix vs. predict PASSED test at tolerance 1e-08 > > Sigma<- out$sigmahat*stationary.cov( + out$xM, out$xM, aRange=1.0,smoothness=1.0, Covariance="Matern") > > S0<- out$sigmahat*stationary.cov( + x0, x0, aRange=1.0,smoothness=1.0, Covariance="Matern") > > S1<- out$sigmahat*stationary.cov( + out$xM, x0, aRange=1.0,smoothness=1.0, Covariance="Matern") > > > > #yhat= Ay > #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) > > look<- S0 - t(S1)%*% t(A) - A%*%S1 + + A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM) )%*% t(A) > > test<- predictSE( out, x0, cov=TRUE) > > test.for.zero( c( look), c( test), tag="Weighted case and exact for ozone2 full + cov", tol=1e-8) Testing: Weighted case and exact for ozone2 full cov PASSED test at tolerance 1e-08 > > > cat("all done testing predictSE.Krig ", fill=TRUE) all done testing predictSE.Krig > options( echo=TRUE) > > proc.time() user system elapsed 3.28 0.20 3.46