test_that("errors", { data <- sim_design(within = 2, between = 2, mu = c(1, 0, 1, 1), r = 0.5, long = TRUE, empirical = TRUE, plot = FALSE) %>% add_contrast("W1", "anova", colnames = "W1") %>% add_contrast("B1", "anova", colnames = "B1") coef <- get_coefs(data) expect_equal(coef, c("(Intercept)" = 0.75, W1 = -0.5, B1 = 0.5, "W1:B1" = 1.0)) coef <- get_coefs(data, y ~ W1 * B1) expect_equal(coef, c("(Intercept)" = 0.75, W1 = -0.5, B1 = 0.5, "W1:B1" = 1.0)) coef <- get_coefs(data, y ~ B1 * W1) expect_equal(coef, c("(Intercept)" = 0.75, B1 = 0.5, W1 = -0.5, "B1:W1" = 1.0)) coef <- get_coefs(data, y ~ W1 + B1) expect_equal(coef, c("(Intercept)" = 0.75, W1 = -0.5, B1 = 0.5)) coef <- get_coefs(data, y ~ B1) expect_equal(coef, c("(Intercept)" = 0.75, B1 = 0.5)) data$y <- norm2binom(data$y) mod <- lme4::glmer(y ~ W1*B1 + (1 | id), data, family = binomial) coef <- get_coefs(data, fun = "glm", family = binomial) expect_equivalent(coef, lme4::fixef(mod)) })