context("GAN") source("utils.R") test_succeeds_windows('download URLs_HORSE_2_ZEBRA', { if(!dir.exists('horse2zebra')) { options(timeout=10000) URLs_HORSE_2_ZEBRA() } }) test_succeeds_windows('dataloader URLs_HORSE_2_ZEBRA', { horse2zebra = 'horse2zebra' trainA_path = file.path(horse2zebra,'trainA') trainB_path = file.path(horse2zebra,'trainB') testA_path = file.path(horse2zebra,'testA') testB_path = file.path(horse2zebra,'testB') if(reticulate::py_module_available('upit')) { dls = get_dls(trainA_path, trainB_path, num_A = 130,load_size = 270,crop_size = 144,bs=4) } }) test_succeeds_windows('CycleGAN model', { if(reticulate::py_module_available('upit')) { cycle_gan = CycleGAN(3,3,64) learn = cycle_learner(dls, cycle_gan) } })