R Under development (unstable) (2025-06-04 r88278 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > library(fanovaGraph) Loading required package: sensitivity Loading required package: igraph Attaching package: 'igraph' The following object is masked from 'package:testthat': compare The following objects are masked from 'package:stats': decompose, spectrum The following object is masked from 'package:base': union Loading required package: DiceKriging > > test_check("fanovaGraph") optimisation start ------------------ * estimation method : MLE * optimisation method : BFGS * analytical gradient : used * trend model : ~1 * covariance model : - type : matern5_2 - nugget : NO - parameters lower bounds : 1e-10 1e-10 1e-10 1e-10 1e-10 1e-10 - parameters upper bounds : 3.975224 3.967393 3.977366 3.946013 3.935601 3.983994 - best initial criterion value(s) : -26.60656 N = 6, M = 5 machine precision = 2.22045e-16 At X0, 0 variables are exactly at the bounds At iterate 0 f= 26.607 |proj g|= 3.0822 At iterate 1 f = 20.74 |proj g|= 3.6659 At iterate 2 f = 14.479 |proj g|= 2.4267 At iterate 3 f = 12.836 |proj g|= 0.96942 At iterate 4 f = 12.753 |proj g|= 0.39588 At iterate 5 f = 12.729 |proj g|= 0.20836 At iterate 6 f = 12.724 |proj g|= 0.14199 At iterate 7 f = 12.72 |proj g|= 0.032266 At iterate 8 f = 12.72 |proj g|= 0.013542 At iterate 9 f = 12.72 |proj g|= 0.0062952 At iterate 10 f = 12.72 |proj g|= 0.001052 At iterate 11 f = 12.72 |proj g|= 0.0003525 At iterate 12 f = 12.72 |proj g|= 0.00011112 iterations 12 function evaluations 14 segments explored during Cauchy searches 16 BFGS updates skipped 0 active bounds at final generalized Cauchy point 0 norm of the final projected gradient 0.000111123 final function value 12.7196 F = 12.7196 final value 12.719557 converged optimisation start ------------------ * estimation method : MLE * optimisation method : BFGS * analytical gradient : used * trend model : ~1 * covariance model : - type : matern5_2 - nugget : NO - parameters lower bounds : 1e-10 1e-10 1e-10 1e-10 1e-10 1e-10 - parameters upper bounds : 3.975224 3.967393 3.977366 3.946013 3.935601 3.983994 - best initial criterion value(s) : -26.60656 N = 6, M = 5 machine precision = 2.22045e-16 At X0, 0 variables are exactly at the bounds At iterate 0 f= 26.607 |proj g|= 3.0822 At iterate 1 f = 20.74 |proj g|= 3.6659 At iterate 2 f = 14.479 |proj g|= 2.4267 At iterate 3 f = 12.836 |proj g|= 0.96942 At iterate 4 f = 12.753 |proj g|= 0.39588 At iterate 5 f = 12.729 |proj g|= 0.20836 At iterate 6 f = 12.724 |proj g|= 0.14199 At iterate 7 f = 12.72 |proj g|= 0.032266 At iterate 8 f = 12.72 |proj g|= 0.013542 At iterate 9 f = 12.72 |proj g|= 0.0062952 At iterate 10 f = 12.72 |proj g|= 0.001052 At iterate 11 f = 12.72 |proj g|= 0.0003525 At iterate 12 f = 12.72 |proj g|= 0.00011112 iterations 12 function evaluations 14 segments explored during Cauchy searches 16 BFGS updates skipped 0 active bounds at final generalized Cauchy point 0 norm of the final projected gradient 0.000111123 final function value 12.7196 F = 12.7196 final value 12.719557 converged optimisation start ------------------ * estimation method : MLE * optimisation method : BFGS * analytical gradient : used * trend model : ~1 * covariance model : - type : matern5_2 - nugget : NO - parameters lower bounds : 1e-10 1e-10 1e-10 - parameters upper bounds : 2 2 2 - best initial criterion value(s) : 9.143308 N = 3, M = 5 machine precision = 2.22045e-16 At X0, 0 variables are exactly at the bounds At iterate 0 f= -9.1433 |proj g|= 1.3325 At iterate 1 f = -9.8646 |proj g|= 1.1083 At iterate 2 f = -9.9093 |proj g|= 0.63318 At iterate 3 f = -9.938 |proj g|= 0.49174 At iterate 4 f = -9.9651 |proj g|= 0.24733 At iterate 5 f = -9.9751 |proj g|= 0.051243 At iterate 6 f = -9.9754 |proj g|= 0.0021695 At iterate 7 f = -9.9754 |proj g|= 0.0001937 At iterate 8 f = -9.9754 |proj g|= 0.00022106 iterations 8 function evaluations 14 segments explored during Cauchy searches 10 BFGS updates skipped 0 active bounds at final generalized Cauchy point 0 norm of the final projected gradient 0.000221057 final function value -9.97537 F = -9.97537 final value -9.975373 converged threshold RMSE [1,] 0.0 0.3281777 [2,] 0.4 0.2187619 [3,] 1.0 0.9907953 [ FAIL 0 | WARN 3 | SKIP 0 | PASS 32 ] [ FAIL 0 | WARN 3 | SKIP 0 | PASS 32 ] > > proc.time() user system elapsed 18.21 1.73 20.18