testthat::skip_on_cran() testthat::skip_on_ci() ##### binomial ----------------------------------------------------------------- # Create data.table. data <- familiar:::test.create_good_data_set(outcome_type="binomial", to_data_object=FALSE) # Check that train_familiar functions correctly. model <- familiar::train_familiar(data=data, fs_method="mrmr", learner="glm_logistic", outcome_type="binomial", outcome_column="cell_malignancy", sample_id_column="id", class_levels=c("benign", "malignant"), verbose=FALSE) testthat::test_that("Logistic model can be trained using train_familiar", { testthat::expect_s4_class(model, "familiarGLM") testthat::expect_equal(familiar:::model_is_trained(model), TRUE) testthat::expect_s3_class(summary(model), "summary.glm") testthat::expect_equal(is.null(familiar::coef(model)), FALSE) # testthat::expect_equal(is.null(familiar::vcov(model)), FALSE) ## fastglm has no vcov # Assert that between 1 and 9 features are present, aside from the intercept. testthat::expect_gte(length(model@model_features), 1L) testthat::expect_lte(length(model@model_features), 9L) testthat::expect_equal(length(model@model_features) <= model@hyperparameters$sign_size, TRUE) }) ##### multinomial -------------------------------------------------------------- # Create data.table. data <- familiar:::test.create_good_data_set(outcome_type="multinomial", to_data_object=FALSE) # Check that train_familiar functions correctly. model <- familiar::train_familiar(data=data, fs_method="none", learner="glm_multinomial", outcome_type="multinomial", outcome_column="Species", sample_id_column="sample_id", class_levels=c("setosa", "versicolor", "virginica"), verbose=FALSE) testthat::test_that("Logistic model can be trained using train_familiar", { testthat::expect_s4_class(model, "familiarGLM") testthat::expect_equal(familiar:::model_is_trained(model), TRUE) testthat::expect_s3_class(summary(model), "summary.multinom") testthat::expect_equal(is.null(familiar::coef(model)), FALSE) testthat::expect_equal(is.null(familiar::vcov(model)), FALSE) }) ##### count -------------------------------------------------------------------- # Create data.table. data <- familiar:::test.create_good_data_set(outcome_type="count", to_data_object=FALSE) # Check that train_familiar functions correctly. model <- familiar::train_familiar(data=data, fs_method="mrmr", learner="glm_poisson", outcome_type="count", outcome_column="median_house_value", sample_id_column="sample_id", verbose=FALSE) testthat::test_that("Poisson model can be trained using train_familiar", { testthat::expect_s4_class(model, "familiarGLM") testthat::expect_equal(familiar:::model_is_trained(model), TRUE) testthat::expect_s3_class(summary(model), "summary.glm") testthat::expect_equal(is.null(familiar::coef(model)), FALSE) # testthat::expect_equal(is.null(familiar::vcov(model)), FALSE) ## fastglm has no vcov }) ##### continuous --------------------------------------------------------------- # Create data.table. data <- familiar:::test.create_good_data_set(outcome_type="continuous", to_data_object=FALSE) # Check that train_familiar functions correctly. model <- familiar::train_familiar(data=data, fs_method="mrmr", learner="glm_gaussian", outcome_type="continuous", outcome_column="testscr", sample_id_column="sample_id", verbose=FALSE) testthat::test_that("Gaussian model can be trained using train_familiar", { testthat::expect_s4_class(model, "familiarGLM") testthat::expect_equal(familiar:::model_is_trained(model), TRUE) testthat::expect_s3_class(summary(model), "summary.glm") testthat::expect_equal(is.null(familiar::coef(model)), FALSE) # testthat::expect_equal(is.null(familiar::vcov(model)), FALSE) ## fastglm has no vcov }) ##### survival ----------------------------------------------------------------- # Create data.table. data <- familiar:::test.create_good_data_set(outcome_type="survival", to_data_object=FALSE) # Check that train_familiar functions correctly. model <- familiar::train_familiar(data=data, fs_method="none", learner="cox", outcome_type="survival", outcome_column=c("time", "status"), sample_id_column="id", verbose=FALSE) testthat::test_that("Cox proportional hazards model can be trained using train_familiar", { testthat::expect_s4_class(model, "familiarCoxPH") testthat::expect_equal(familiar:::model_is_trained(model), TRUE) testthat::expect_s3_class(summary(model), "summary.coxph") testthat::expect_equal(is.null(familiar::coef(model)), FALSE) testthat::expect_equal(is.null(familiar::vcov(model)), FALSE) }) ##### Use experiment data ------------------------------------------------------ # Create data.table. data <- familiar:::test.create_good_data_set(outcome_type="binomial", to_data_object=FALSE) # Create data assignment. experiment_data <- familiar::precompute_data_assignment(data=data, experimental_design="bt(fs+mb,5)", outcome_type="binomial", outcome_column="cell_malignancy", sample_id_column="id", class_levels=c("benign", "malignant"), verbose=FALSE) # Check that train_familiar functions correctly. model <- familiar::train_familiar(data=data, experiment_data=experiment_data, fs_method="mrmr", learner="glm_logistic", outcome_type="binomial", outcome_column="cell_malignancy", sample_id_column="id", class_levels=c("benign", "malignant"), verbose=FALSE) testthat::test_that("Logistic model can be trained using train_familiar", { # Assert that 5 models are trained. testthat::expect_equal(length(model), 5L) # Assert that the project ids match. testthat::expect_equal(model[[1]]@project_id, experiment_data@project_id) }) #### Check "none" variable importance method ----------------------------------- # Create data.table. data <- familiar:::test.create_good_data_set(outcome_type="binomial", to_data_object=FALSE) # Check that train_familiar functions correctly. model <- familiar::train_familiar(data=data, cluster_method="none", fs_method="none", learner="glm_logistic", outcome_type="binomial", outcome_column="cell_malignancy", sample_id_column="id", class_levels=c("benign", "malignant"), verbose=FALSE) testthat::test_that("Assert that all features are used for \"none\" variable importance method.", { # Assert that all features are included in the model. testthat::expect_equal(length(model@model_features), 9L) }) #### Check "signature_only" variable importance method ----------------------------------- # Create data.table. data <- familiar:::test.create_good_data_set(outcome_type="binomial", to_data_object=FALSE) # Check that train_familiar functions correctly. model <- familiar::train_familiar(data=data, signature=c("cell_size_uniformity", "clump_thickness"), fs_method="signature_only", learner="glm_logistic", outcome_type="binomial", outcome_column="cell_malignancy", sample_id_column="id", class_levels=c("benign", "malignant"), verbose=FALSE) testthat::test_that("Assert that all features are used for \"signature_only\" variable importance method.", { # Assert that only signature features are included in the model. testthat::expect_equal(length(model@model_features), 2L) testthat::expect_setequal(c("cell_size_uniformity", "clump_thickness"), model@model_features) }) #### Check interaction between signature and other features--------------------- # Create data.table. data <- familiar:::test.create_good_data_set(outcome_type="binomial", to_data_object=FALSE) # Check that train_familiar functions correctly. model <- familiar::train_familiar(data=data, signature=c("marginal_adhesion", "bland_chromatin"), fs_method="mrmr", learner="glm_logistic", outcome_type="binomial", outcome_column="cell_malignancy", sample_id_column="id", class_levels=c("benign", "malignant"), verbose=FALSE) testthat::test_that("Assert that signature features are used in the model.", { # Assert that only signature features are included in the model. testthat::expect_gte(length(model@model_features), 2L) testthat::expect_lte(length(model@model_features), 9L) testthat::expect_equal(all(c("marginal_adhesion", "bland_chromatin") %in% model@model_features), TRUE) testthat::expect_equal(length(model@model_features) <= model@hyperparameters$sign_size, TRUE) })