library(eRm) # list of 3 is returned (item combinations, fit rasch model and ppar) data(ADL) testthat::test_that("test_personsItems",{ testthat::expect_equal(length(exhaustiveRasch::test_personsItems( items=1:5, dset=ADL, na.rm=TRUE, modelType="RM", estimation_param= estimation_control(est="psychotools"))), expected=3)}) # list of 3 is returned (item combinations, fit rasch model and ppar) data(ADL) firstrun <- exhaustiveRasch::test_personsItems( items=1:5, dset=ADL, na.rm=TRUE, modelType="RM", estimation_param= estimation_control(est="eRm")) testthat::test_that("test_personsItems with pre-fit model in the 'items' parameter",{ testthat::expect_equal(length(exhaustiveRasch::test_personsItems( items=firstrun, dset=ADL, na.rm=TRUE, modelType="RM", estimation_param= estimation_control(est="eRm"))), expected=3)}) # empty list is returned data(ADL) testthat::test_that("test_personsItems",{ testthat::expect_equal(length(exhaustiveRasch::test_personsItems( items=c(1,2,3,4,8), dset=ADL, na.rm=TRUE, modelType="RM", estimation_param= estimation_control(est="pairwise"))), expected=0)}) # list of 3 is returned (item combinations, fit rasch model and ppar) data(ADL) testthat::test_that("test_personsItems with gap_prop",{ testthat::expect_equal(length(exhaustiveRasch::test_personsItems( items=1:5, dset=ADL, na.rm=TRUE, modelType="RM", gap_prop = 0.6, estimation_param= estimation_control(est="eRm"))), expected=3)})