library(eRm) # list of 3 is returned (item combinations, fit rasch model and ppar) data(ADL) testthat::test_that("test_mloef: p-value 0.088, alpha: 0.05",{ testthat::expect_equal(length( exhaustiveRasch::test_mloef(items=1:5, dset=ADL, na.rm=TRUE, modelType="RM", alpha=0.05, estimation_param = estimation_control(est="eRm"))), expected=3)}) # list of 3 is returned (item combinations, fit rasch model and ppar) data(ADL) testthat::test_that("test_mloef: p-value 0.088, alpha: 0.05; na.rm=FALSE",{ testthat::expect_equal(length( exhaustiveRasch::test_mloef(items=1:5, dset=ADL, na.rm=FALSE, modelType="RM", alpha=0.05, estimation_param= estimation_control(est="eRm"))), expected=3)}) # list of 3 is returned (item combinations, fit rasch model and ppar) data(ADL) firstrun <- exhaustiveRasch::test_mloef( items=1:5, dset=ADL, na.rm=FALSE, modelType="RM", alpha=0.05, estimation_param= estimation_control(est="eRm")) testthat::test_that("test_mloef: p-value 0.088, alpha: 0.05; with pre-fitted model in 'items' parameter",{ testthat::expect_equal(length( exhaustiveRasch::test_mloef(items=firstrun, dset=ADL, na.rm=FALSE, modelType="RM", alpha=0.05, estimation_param= estimation_control(est="eRm"))), expected=3)}) # empty list is returned data(ADL) testthat::test_that("test_mloef: p-value 0.088, alpha: 0.1",{ testthat::expect_equal(length( exhaustiveRasch::test_mloef(items=1:5, dset=ADL, na.rm=TRUE, modelType="RM", estimation_param= estimation_control(est="eRm"))), expected=0)})