library(eRm) # Wald test on item level (z-values): # z-statistic p-value # beta V06 2.115 0.034 # beta V07 -0.934 0.350 # beta V08 -0.660 0.509 # test fits criteria, but eRm excludes items due to inappropriate response # patterns within subgroups # empty list is returned data(ADL) testthat::test_that("test_waldtest: inapprpriate response patterns",{ testthat::expect_equal(length(exhaustiveRasch::test_waldtest(items=1:5, dset=ADL, na.rm=TRUE, modelType="RM", bonf=TRUE, estimation_param= estimation_control(est="eRm"))), expected=0)}) #Wald test on item level (z-values): # z-statistic p-value # beta V12 -0.169 0.866 # beta V22 0.391 0.696 # beta V27 0.488 0.626 # beta V36 -0.645 0.519 # beta V39 -0.128 0.899 # list of 3 is returned (item combinations, fit rasch model and ppar) data(ADL) testthat::test_that("test_waldtest: lowest p-value=0.519",{ testthat::expect_equal(length( exhaustiveRasch::test_waldtest(items=c(6,7,12,14,15), dset=ADL, na.rm=TRUE, modelType="RM", bonf=FALSE, estimation_param= estimation_control(est="psychotools"))), expected=3)}) # list of 3 is returned (item combinations, fit rasch model and ppar) data(ADL) testthat::test_that("test_waldtest: lowest p-value=0.519; na.rm=FALSE",{ testthat::expect_equal(length( exhaustiveRasch::test_waldtest(items=c(6,7,12,14,15), dset=ADL, na.rm=FALSE, modelType="RM", bonf=FALSE, estimation_param= estimation_control(est="psychotools"))), expected=3)}) # list of 3 is returned (item combinations, fit rasch model and ppar) data(ADL) firstrun <- exhaustiveRasch::test_waldtest( items=c(6,7,12,14,15), dset=ADL, na.rm=TRUE, modelType="RM", bonf=FALSE, estimation_param= estimation_control(est="psychotools")) testthat::test_that("test_waldtest: lowest p-value=0.519; pre-fit model in the 'items' parameter",{ testthat::expect_equal(length( exhaustiveRasch::test_waldtest(items=firstrun, dset=ADL, na.rm=TRUE, modelType="RM", bonf=F, estimation_param= estimation_control(est="psychotools"))), expected=3)}) # list of 3 is returned (item combinations, fit rasch model and ppar) data(cognition) testthat::test_that("test_waldtest: ",{ testthat::expect_equal(length( exhaustiveRasch::test_waldtest(items=c(1:5,7), dset=cognition, na.rm=T, modelType="PCM", bonf=FALSE, alpha=0.05, icat=F, splitcr="random", estimation_param= estimation_control(est="pairwise", splitseed=332))), expected=3)})