#context("summary.kgaps") # Check that summary.kgaps() returns the correct values # For inc_cens = FALSE ----- ### S&P 500 index u <- quantile(sp500, probs = 0.60) theta <- kgaps(sp500, u, inc_cens = FALSE) res1 <- signif(c(theta$theta, theta$se), digits = max(3, getOption("digits") - 3L)) res2 <- summary(theta)$matrix test_that("Fitted object and summary() agree", { testthat::expect_equal(res1, res2, ignore_attr = TRUE) }) # Check that kgaps() gives the same output for vector and matrix data input theta2 <- kgaps(as.matrix(sp500), u, inc_cens = FALSE) theta$call <- NULL theta2$call <- NULL test_that("kgaps: vector data vs matrix data", { testthat::expect_equal(theta, theta2, ignore_attr = TRUE) })