test_that("Integration L", { data <- integration.testdata1() prob1 <- gaussint( Q.chol = data$L, a = data$a, b = data$b, seed = data$seed, max.threads = 1 ) expect_equal(prob1$P[1], 0.9680023, tolerance = 1e-7) expect_equal(prob1$E[1], 5.914764e-06, tolerance = 1e-6) }) test_that("Integration Q", { data <- integration.testdata1() prob1 <- gaussint( Q = data$Q, a = data$a, b = data$b, seed = data$seed, max.threads = 1 ) expect_equal(prob1$P[1], 0.9680023, tolerance = 1e-7) expect_equal(prob1$E[1], 5.914764e-06, tolerance = 1e-6) }) test_that("Integration mu", { data <- integration.testdata1() prob1 <- gaussint( Q = data$Q, mu = data$mu, a = data$a + data$mu, b = data$b + data$mu, seed = data$seed, max.threads = 1 ) expect_equal(prob1$P[1], 0.9680023, tolerance = 1e-7) expect_equal(prob1$E[1], 5.914764e-06, tolerance = 1e-6) }) test_that("Integration limit", { data <- integration.testdata1() prob1 <- gaussint( Q = data$Q, a = data$a, b = data$b, seed = data$seed, lim = 0.97, max.threads = 1 ) prob2 <- gaussint( Q = data$Q, a = data$a, b = data$b, seed = data$seed, lim = 0.9, max.threads = 1 ) expect_equal(prob1$P[1], 0.0, tolerance = 1e-7) expect_equal(prob2$P[1], 0.9680023, tolerance = 1e-6) }) test_that("Integration reordering", { data <- integration.testdata1() prob1 <- gaussint( Q = data$Q, mu = data$mu, a = data$a + data$mu, b = data$b + data$mu, seed = data$seed, max.threads = 1, use.reordering = "sparsity" ) expect_equal(prob1$P[1], 0.9680023, tolerance = 1e-5) expect_equal(prob1$E[1], 5.914764e-06, tolerance = 1e-5) })