context("Estimator - lm_robust, clustered") test_that("lm cluster se", { N <- 100 dat <- data.frame( Y = rnorm(N), Z = rbinom(N, 1, .5), X = rnorm(N), J = sample(1:10, N, replace = T), W = runif(N) ) ## Test functionality lm_robust(Y ~ Z, clusters = J, data = dat) lm_robust(Y ~ Z + X, clusters = J, data = dat) lm_robust( Y ~ Z + X, clusters = J, data = dat ) lm_robust( Y ~ Z + X, clusters = J, se_type = "stata", data = dat, ci = T ) expect_equivalent( as.matrix( tidy( lm_robust( Y ~ X + Z, clusters = J, ci = FALSE, data = dat ) )[, c("p.value", "conf.low", "conf.high")] ), matrix(NA, nrow = 3, ncol = 3) ) ## Test equality lm_interact <- lm_robust( Y ~ Z * X, clusters = J, data = dat ) lm_interact_stata <- lm_robust( Y ~ Z * X, clusters = J, se_type = "stata", data = dat ) lm_interact_simple <- lm(Y ~ Z * X, data = dat) bm_interact <- BMlmSE( lm_interact_simple, clustervar = as.factor(dat$J), IK = FALSE ) bm_interact bm_interact_interval <- coef(lm_interact_simple)["Z:X"] + qt(0.975, df = bm_interact$dof["Z:X"]) * bm_interact$se["Z:X"] * c(-1, 1) bm_interact_stata_interval <- coef(lm_interact_simple)["Z:X"] + qt(0.975, df = length(unique(dat$J)) - 1) * bm_interact$se.Stata["Z:X"] * c(-1, 1) expect_equivalent( as.numeric(tidy(lm_interact)[4, c("std.error", "conf.low", "conf.high")]), c(bm_interact$se["Z:X"], bm_interact_interval) ) expect_equivalent( as.numeric(tidy(lm_interact_stata)[4, c("std.error", "conf.low", "conf.high")]), c(bm_interact$se.Stata["Z:X"], bm_interact_stata_interval) ) lm_full <- lm_robust( Y ~ Z + X, clusters = J, data = dat ) lm_full_simple <- lm(Y ~ Z + X, data = dat) bm_full <- BMlmSE( lm_full_simple, clustervar = as.factor(dat$J), IK = FALSE ) bm_full_moe <- qt(0.975, df = bm_full$dof) * bm_full$se bm_full_lower <- coef(lm_full_simple) - bm_full_moe bm_full_upper <- coef(lm_full_simple) + bm_full_moe expect_equivalent( as.matrix(tidy(lm_full)[, c("std.error", "conf.low", "conf.high")]), cbind(bm_full$se, bm_full_lower, bm_full_upper) ) ## Works with rank deficient case dat$X2 <- dat$X for (se_type in cr_se_types) { lmr_rd <- lm_robust(Y ~ X + Z + X2, data = dat, clusters = J, se_type = se_type) lmr_full <- lm_robust(Y ~ X + Z, data = dat, clusters = J, se_type = se_type) expect_identical( tidy(lmr_rd)[1:3, ], tidy(lmr_full) ) } ## Test error handling expect_error( lm_robust( Y ~ Z, clusters = J, se_type = "HC2", data = dat ), "CR2" ) expect_error( lm_robust( Y ~ Z, se_type = "CR2", data = dat ), "CR2" ) # To easily do with and without weights test_lm_cluster_variance <- function(w) { # Test other estimators lm_cr0 <- lm_robust(Y ~ Z + X, data = dat, weights = w, clusters = J, se_type = "CR0") lm_stata <- lm_robust(Y ~ Z + X, data = dat, weights = w, clusters = J, se_type = "stata") lm_cr2 <- lm_robust(Y ~ Z + X, data = dat, weights = w, clusters = J, se_type = "CR2") # Stata is the same as CR0 but with finite sample expect_equivalent( lm_cr0$std.error ^ 2, lm_stata$std.error ^ 2 * (N - length(coef(lm_stata))) * (length(unique(dat$J)) - 1) / ((N - 1) * length(unique(dat$J))) ) expect_false(all(lm_cr0$std.error == lm_stata$std.error)) expect_false(all(lm_cr0$std.error == lm_cr2$std.error)) expect_false(all(lm_stata$std.error == lm_cr2$std.error)) expect_false(all(lm_stata$df == lm_cr2$df)) expect_equivalent( lm_cr0$df, lm_stata$df ) } # No weights first test_lm_cluster_variance(NULL) test_lm_cluster_variance(dat$W) }) test_that("Clustered SEs match clubSandwich", { skip_if_not_installed("clubSandwich") skip_on_cran() lm_o <- lm(mpg ~ hp, data = mtcars) lm_ow <- lm(mpg ~ hp, data = mtcars, weights = wt) for (se_type in cr_se_types) { lm_r <- lm_robust(mpg ~ hp, data = mtcars, clusters = cyl, se_type = se_type) lm_rw <- lm_robust(mpg ~ hp, data = mtcars, weights = wt, clusters = cyl, se_type = se_type) expect_equivalent( vcov(lm_r), as.matrix(clubSandwich::vcovCR( lm_o, cluster = mtcars$cyl, type = ifelse(se_type == "stata", "CR1S", se_type) )) ) expect_equivalent( vcov(lm_rw), as.matrix(clubSandwich::vcovCR( lm_ow, cluster = mtcars$cyl, type = ifelse(se_type == "stata", "CR1S", se_type) )) ) } }) test_that("multiple outcomes", { skip_if_not_installed("clubSandwich") skip_on_cran() for (se_type in cr_se_types) { lmo <- lm(cbind(mpg, hp) ~ wt, data = mtcars) lmow <- lm(cbind(mpg, hp) ~ wt, weights = qsec, data = mtcars) lmro <- lm_robust(cbind(mpg, hp) ~ wt, data = mtcars, clusters = cyl, se_type = se_type) lmrow <- lm_robust(cbind(mpg, hp) ~ wt, weights = qsec, data = mtcars, clusters = cyl, se_type = se_type) if (se_type == "stata") { # Have to manually do correction for CR1stata # because clubSandwich uses n*ny and r*ny in place of n and r # in stata correction J <- length(unique(mtcars$cyl)) n <- nrow(mtcars) r <- 2 cs_vcov <- as.matrix(clubSandwich::vcovCR(lmo, cluster = mtcars$cyl, type = "CR0")) * ((J * (n - 1)) / ((J - 1) * (n - r))) cs_vcov_w <- as.matrix(clubSandwich::vcovCR(lmow, cluster = mtcars$cyl, type = "CR0")) * ((J * (n - 1)) / ((J - 1) * (n - r))) } else { cs_vcov <- as.matrix(clubSandwich::vcovCR(lmo, cluster = mtcars$cyl, type = se_type)) cs_vcov_w <- as.matrix(clubSandwich::vcovCR(lmow, cluster = mtcars$cyl, type = se_type)) } expect_equivalent( vcov(lmro), cs_vcov ) expect_equivalent( vcov(lmrow), cs_vcov_w ) } # Test same as individual models lmro <- lm_robust(cbind(mpg, hp) ~ wt, data = mtcars, clusters = cyl) lmmpg <- lm_robust(mpg ~ wt, data = mtcars, clusters = cyl) lmhp <- lm_robust(hp ~ wt, data = mtcars, clusters = cyl) expect_equivalent( tidy(lmro)$df[1:2], lmmpg$df ) expect_equivalent( tidy(lmro)$df[3:4], lmhp$df ) expect_equivalent(lmro$r.squared[1], lmmpg$r.squared) expect_equivalent(lmro$r.squared[2], lmhp$r.squared) }) test_that("lm cluster se with missingness", { dat <- data.frame( Y = rnorm(100), Z = rbinom(100, 1, .5), X = rnorm(100), J = sample(1:10, 100, replace = T), W = runif(100) ) dat$X[23] <- NA dat$J[63] <- NA expect_warning( estimatr_cluster_out <- lm_robust( Y ~ Z + X, clusters = J, data = dat ), "missingness in the cluster" ) estimatr_cluster_sub <- lm_robust( Y ~ Z + X, clusters = J, data = dat[-c(23, 63), ] ) estimatr_cluster_out[["call"]] <- NULL estimatr_cluster_sub[["call"]] <- NULL expect_equal( estimatr_cluster_out, estimatr_cluster_sub ) }) test_that("lm works with quoted or unquoted vars and withor without factor clusters", { dat <- data.frame( Y = rnorm(100), Z = rbinom(100, 1, .5), X = rnorm(100), J = sample(1:10, 100, replace = T), W = runif(100) ) lmr <- lm_robust(Y~Z, data = dat, weights = W) lmrq <- lm_robust(Y~Z, data = dat, weights = W) expect_equal( rmcall(lmr), rmcall(lmrq) ) # works with char dat$J <- as.character(dat$J) lmrc <- lm_robust(Y~Z, data = dat, clusters = J) lmrcq <- lm_robust(Y~Z, data = dat, clusters = J) expect_equal( rmcall(lmrc), rmcall(lmrcq) ) # works with num dat$J_num <- as.numeric(dat$J) lmrc_qnum <- lm_robust(Y~Z, data = dat, clusters = J_num) expect_equal( rmcall(lmrc), rmcall(lmrc_qnum) ) # works with factor dat$J_fac <- as.factor(dat$J) expect_equivalent( rmcall(lm_robust(Y~Z, data = dat, clusters = J_fac)), rmcall(lm_robust(Y~Z, data = dat, clusters = J)) ) # works with being cast in the call lm_robust(Y~Z, data = dat, clusters = as.factor(J)) }) test_that("Clustered SEs work with clusters of size 1", { dat <- data.frame( Y = rnorm(100), X = rnorm(100), J = 1:100 ) lm_cr2 <- lm_robust(Y ~ X, data = dat, clusters = J) lm_stata <- lm_robust(Y ~ X, data = dat, clusters = J, se_type = "stata") lmo <- lm(Y ~ X, data = dat) bmo <- BMlmSE( lmo, clustervar = as.factor(dat$J), IK = FALSE ) expect_equivalent( as.matrix(tidy(lm_cr2)[, c("estimate", "std.error", "df")]), cbind(coef(lmo), bmo$se, bmo$dof) ) expect_equivalent( as.matrix(tidy(lm_stata)[, c("estimate", "std.error")]), cbind(coef(lmo), bmo$se.Stata) ) })