test_that('dfcrm_dose_selector matches dfcrm::crm.', { # Example 1 - Empiric model, non-standard scale parameter skeleton <- c(0.1, 0.2, 0.4, 0.55) target <- 0.2 scale = sqrt(0.75) outcomes <- '2NNT 2NNN 3NTT 2NNT' # Dose selection model model <- get_dfcrm(skeleton = skeleton, target = target, scale = scale) x <- model %>% fit(outcomes) # dfcrm model y <- dfcrm::crm(prior = skeleton, target = target, scale = scale, tox = c(0,0,1, 0,0,0, 0,1,1, 0,0,1), level = c(2,2,2, 2,2,2, 3,3,3, 2,2,2)) expect_equal(recommended_dose(x), y$mtd) expect_true(continue(x)) expect_output( print(x), "The model advocates continuing at dose 1." ) expect_equal(round(mean_prob_tox(x), 2), round(y$ptox, 2)) expect_equal(x$dfcrm_fit$model, 'empiric') expect_equal(x$dfcrm_fit$prior.var, 0.75) check_dose_selector_consistency(x) # Example 2 - Logit model, non-standard intercept parameter skeleton <- c(0.1, 0.2, 0.33, 0.45, 0.6, 0.7, 0.8) target <- 0.33 outcomes <- '1NNN 2NNN 3NTT 2NNN 3TNN 3TNT 2NNN' # Dose selection model model <- get_dfcrm(skeleton = skeleton, target = target, intcpt = 4, model = 'logistic') x <- model %>% fit(outcomes) # dfcrm model y <- dfcrm::crm(prior = skeleton, target = target, intcpt = 4, model = 'logistic', tox = c(0,0,0, 0,0,0, 0,1,1, 0,0,0, 1,0,0, 1,0,1, 0,0,0), level = c(1,1,1, 2,2,2, 3,3,3, 2,2,2, 3,3,3, 3,3,3, 2,2,2)) expect_equal(recommended_dose(x), y$mtd) expect_true(continue(x)) expect_output( print(x), "The model advocates continuing at dose 3." ) expect_equal(round(mean_prob_tox(x), 2), round(y$ptox, 2)) expect_equal(x$dfcrm_fit$model, 'logistic') expect_equal(x$dfcrm_fit$intcpt, 4) check_dose_selector_consistency(x) }) test_that('dfcrm_dose_selector matches dfcrm::titecrm.', { # Example 1 - Empiric model, non-standard scale parameter ---- skeleton <- c(0.1, 0.2, 0.4, 0.55) target <- 0.2 scale = sqrt(0.75) outcomes_str <- '2NNT 2NNN 3NTT 2NNT' outcomes <- parse_phase1_outcomes(outcomes_str, as_list = FALSE) set.seed(2024) w <- pmax( runif(n = nrow(outcomes), min = 0, max = 1), outcomes$tox ) outcomes$weight <- w # dfcrm model y <- dfcrm::titecrm( prior = skeleton, target = target, scale = scale, tox = outcomes$tox, level = outcomes$dose, weights = outcomes$weight ) # escalation model via get_dfcrm(tite = TRUE) model1 <- get_dfcrm(skeleton = skeleton, target = target, tite = TRUE, scale = scale) x1 <- model1 %>% fit(outcomes) expect_equal(recommended_dose(x1), y$mtd) expect_true(continue(x1)) expect_output( print(x1), "The model advocates continuing at dose 1." ) expect_equal(round(mean_prob_tox(x1), 2), round(y$ptox, 2)) expect_equal(x1$dfcrm_fit$model, 'empiric') expect_equal(x1$dfcrm_fit$prior.var, 0.75) check_dose_selector_consistency(x1) expect_equal( weight(x1), w ) expect_equal( x1$dfcrm_fit$weights, w ) # escalation model via get_dfcrm_tite model2 <- get_dfcrm_tite(skeleton = skeleton, target = target, scale = scale) x2 <- model2 %>% fit(outcomes) expect_equal(recommended_dose(x2), y$mtd) expect_true(continue(x2)) expect_output( print(x2), "The model advocates continuing at dose 1." ) expect_equal(round(mean_prob_tox(x2), 2), round(y$ptox, 2)) expect_equal(x2$dfcrm_fit$model, 'empiric') expect_equal(x2$dfcrm_fit$prior.var, 0.75) check_dose_selector_consistency(x2) expect_equal( weight(x2), w ) expect_equal( x2$dfcrm_fit$weights, w ) # Example 2 - Logit model, non-standard intercept parameter ---- skeleton <- c(0.1, 0.2, 0.33, 0.45, 0.6, 0.7, 0.8) target <- 0.33 outcomes_str <- '1NNN 2NNN 3NTT 2NNN 3TNN 3TNT 2NNN' outcomes <- parse_phase1_outcomes(outcomes_str, as_list = FALSE) set.seed(2024) w <- pmax( runif(n = nrow(outcomes), min = 0, max = 1), outcomes$tox ) outcomes$weight <- w # dfcrm model y <- dfcrm::titecrm( prior = skeleton, target = target, intcpt = 4, model = 'logistic', tox = outcomes$tox, level = outcomes$dose, weights = outcomes$weight ) # escalation model via get_dfcrm(tite = TRUE) model1 <- get_dfcrm(skeleton = skeleton, target = target, intcpt = 4, model = 'logistic', tite = TRUE) x1 <- model1 %>% fit(outcomes) expect_equal(recommended_dose(x1), y$mtd) expect_true(continue(x1)) expect_output( print(x1), "The model advocates continuing at dose 1." ) expect_equal(round(mean_prob_tox(x1), 2), round(y$ptox, 2)) expect_equal(x1$dfcrm_fit$model, 'logistic') expect_equal(x1$dfcrm_fit$intcpt, 4) check_dose_selector_consistency(x1) expect_equal( weight(x1), w ) expect_equal( x1$dfcrm_fit$weights, w ) # escalation model via get_dfcrm_tite model2 <- get_dfcrm_tite(skeleton = skeleton, target = target, intcpt = 4, model = 'logistic') x2 <- model2 %>% fit(outcomes) expect_equal(recommended_dose(x2), y$mtd) expect_true(continue(x2)) expect_output( print(x2), "The model advocates continuing at dose 1." ) expect_equal(round(mean_prob_tox(x2), 2), round(y$ptox, 2)) expect_equal(x2$dfcrm_fit$model, 'logistic') expect_equal(x2$dfcrm_fit$intcpt, 4) check_dose_selector_consistency(x2) expect_equal( weight(x2), w ) expect_equal( x2$dfcrm_fit$weights, w ) }) test_that('dfcrm_selector supports correct interface.', { skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6) target <- 0.25 model_fitter <- get_dfcrm(skeleton = skeleton, target = target) # Example 1, using outcome string x <- fit(model_fitter, '1NNN 2NTT') expect_equal(tox_target(x), 0.25) expect_true(is.numeric(tox_target(x))) expect_equal(num_patients(x), 6) expect_true(is.integer(num_patients(x))) expect_equal(cohort(x), c(1,1,1, 2,2,2)) expect_true(is.integer(cohort(x))) expect_equal(length(cohort(x)), num_patients(x)) expect_equal(doses_given(x), c(1,1,1, 2,2,2)) expect_true(is.integer(doses_given(x))) expect_equal(length(doses_given(x)), num_patients(x)) expect_equal(tox(x), c(0,0,0, 0,1,1)) expect_true(is.integer(tox(x))) expect_equal(length(tox(x)), num_patients(x)) expect_true(is.numeric(weight(x))) expect_equal(length(weight(x)), num_patients(x)) expect_equal(num_tox(x), 2) expect_true(is.integer(num_tox(x))) expect_true(all((model_frame(x) - data.frame(patient = c(1,2,3,4,5,6), cohort = c(1,1,1,2,2,2), dose = c(1,1,1,2,2,2), tox = c(0,0,0,0,1,1), weight = c(1,1,1,1,1,1))) == 0)) expect_equal(nrow(model_frame(x)), num_patients(x)) expect_equal(num_doses(x), 5) expect_true(is.integer(tox(x))) expect_equal(dose_indices(x), 1:5) expect_true(is.integer(dose_indices(x))) expect_equal(length(dose_indices(x)), num_doses(x)) expect_equal(recommended_dose(x), 1) expect_true(is.integer(recommended_dose(x))) expect_equal(length(recommended_dose(x)), 1) expect_equal(continue(x), TRUE) expect_true(is.logical(continue(x))) expect_equal(n_at_dose(x), c(3,3,0,0,0)) expect_true(is.integer(n_at_dose(x))) expect_equal(length(n_at_dose(x)), num_doses(x)) expect_equal(n_at_dose(x, dose = 0), 0) expect_true(is.integer(n_at_dose(x, dose = 0))) expect_equal(length(n_at_dose(x, dose = 0)), 1) expect_equal(n_at_dose(x, dose = 1), 3) expect_true(is.integer(n_at_dose(x, dose = 1))) expect_equal(length(n_at_dose(x, dose = 1)), 1) expect_equal(n_at_dose(x, dose = 'recommended'), 3) expect_true(is.integer(n_at_dose(x, dose = 'recommended'))) expect_equal(length(n_at_dose(x, dose = 'recommended')), 1) expect_equal(n_at_recommended_dose(x), 3) expect_true(is.integer(n_at_recommended_dose(x))) expect_equal(length(n_at_recommended_dose(x)), 1) expect_equal(is_randomising(x), FALSE) expect_true(is.logical(is_randomising(x))) expect_equal(length(is_randomising(x)), 1) expect_equal(unname(prob_administer(x)), c(0.5,0.5,0,0,0)) expect_true(is.numeric(prob_administer(x))) expect_equal(length(prob_administer(x)), num_doses(x)) expect_equal(tox_at_dose(x), c(0,2,0,0,0)) expect_true(is.integer(tox_at_dose(x))) expect_equal(length(tox_at_dose(x)), num_doses(x)) expect_true(is.numeric(empiric_tox_rate(x))) expect_equal(length(empiric_tox_rate(x)), num_doses(x)) expect_true(is.numeric(mean_prob_tox(x))) expect_equal(length(mean_prob_tox(x)), num_doses(x)) expect_true(is.numeric(median_prob_tox(x))) expect_equal(length(median_prob_tox(x)), num_doses(x)) expect_true(is.logical(dose_admissible(x))) expect_equal(length(dose_admissible(x)), num_doses(x)) expect_true(is.numeric(prob_tox_quantile(x, p = 0.9))) expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x)) expect_true(is.numeric(prob_tox_exceeds(x, 0.5))) expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x)) expect_true(is.logical(supports_sampling(x))) expect_true(is.data.frame(prob_tox_samples(x))) expect_true(is.data.frame(prob_tox_samples(x, tall = TRUE))) # # Expect summary to not error. This is how that is tested, apparently: # expect_error(summary(x), NA) expect_output(print(x)) expect_true(tibble::is_tibble(as_tibble(x))) expect_true(nrow(as_tibble(x)) >= num_doses(x)) # Example 2, using trivial outcome string x <- fit(model_fitter, '') expect_equal(tox_target(x), 0.25) expect_true(is.numeric(tox_target(x))) expect_equal(num_patients(x), 0) expect_true(is.integer(num_patients(x))) expect_equal(cohort(x), integer(0)) expect_true(is.integer(cohort(x))) expect_equal(length(cohort(x)), num_patients(x)) expect_equal(doses_given(x), integer(0)) expect_true(is.integer(doses_given(x))) expect_equal(length(doses_given(x)), num_patients(x)) expect_equal(tox(x), integer(0)) expect_true(is.integer(tox(x))) expect_equal(length(tox(x)), num_patients(x)) expect_true(is.numeric(weight(x))) expect_equal(length(weight(x)), num_patients(x)) expect_equal(num_tox(x), 0) expect_true(is.integer(num_tox(x))) mf <- model_frame(x) expect_equal(nrow(mf), 0) expect_equal(ncol(mf), 5) expect_equal(num_doses(x), 5) expect_true(is.integer(num_doses(x))) expect_equal(dose_indices(x), 1:5) expect_true(is.integer(dose_indices(x))) expect_equal(length(dose_indices(x)), num_doses(x)) expect_equal(recommended_dose(x), 1) expect_true(is.integer(recommended_dose(x))) expect_equal(length(recommended_dose(x)), 1) expect_equal(continue(x), TRUE) expect_true(is.logical(continue(x))) expect_equal(n_at_dose(x), c(0,0,0,0,0)) expect_true(is.integer(n_at_dose(x))) expect_equal(length(n_at_dose(x)), num_doses(x)) expect_equal(n_at_dose(x, dose = 0), 0) expect_true(is.integer(n_at_dose(x, dose = 0))) expect_equal(length(n_at_dose(x, dose = 0)), 1) expect_equal(n_at_dose(x, dose = 1), 0) expect_true(is.integer(n_at_dose(x, dose = 1))) expect_equal(length(n_at_dose(x, dose = 1)), 1) expect_equal(n_at_dose(x, dose = 'recommended'), 0) expect_true(is.integer(n_at_dose(x, dose = 'recommended'))) expect_equal(length(n_at_dose(x, dose = 'recommended')), 1) expect_equal(n_at_recommended_dose(x), 0) expect_true(is.integer(n_at_recommended_dose(x))) expect_equal(length(n_at_recommended_dose(x)), 1) expect_equal(is_randomising(x), FALSE) expect_true(is.logical(is_randomising(x))) expect_equal(length(is_randomising(x)), 1) expect_true(is.numeric(prob_administer(x))) expect_equal(length(prob_administer(x)), num_doses(x)) expect_equal(tox_at_dose(x), c(0,0,0,0,0)) expect_true(is.integer(tox_at_dose(x))) expect_equal(length(tox_at_dose(x)), num_doses(x)) expect_true(is.numeric(empiric_tox_rate(x))) expect_equal(length(empiric_tox_rate(x)), num_doses(x)) expect_true(is.numeric(mean_prob_tox(x))) expect_equal(length(mean_prob_tox(x)), num_doses(x)) expect_true(is.numeric(median_prob_tox(x))) expect_equal(length(median_prob_tox(x)), num_doses(x)) expect_true(is.logical(dose_admissible(x))) expect_equal(length(dose_admissible(x)), num_doses(x)) expect_true(is.numeric(prob_tox_quantile(x, p = 0.9))) expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x)) expect_true(is.numeric(prob_tox_exceeds(x, 0.5))) expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x)) expect_true(is.logical(supports_sampling(x))) expect_true(is.data.frame(prob_tox_samples(x))) expect_true(is.data.frame(prob_tox_samples(x, tall = TRUE))) # Expect summary to not error. This is how that is tested, apparently: expect_error(summary(x), NA) expect_output(print(x)) expect_true(tibble::is_tibble(as_tibble(x))) expect_true(nrow(as_tibble(x)) >= num_doses(x)) # Example 3, using tibble of outcomes outcomes <- tibble( cohort = c(1,1,1, 2,2,2), dose = c(1,1,1, 2,2,2), tox = c(0,0, 0,0, 1,1) ) x <- fit(model_fitter, outcomes) expect_equal(tox_target(x), 0.25) expect_true(is.numeric(tox_target(x))) expect_equal(num_patients(x), 6) expect_true(is.integer(num_patients(x))) expect_equal(cohort(x), c(1,1,1, 2,2,2)) expect_true(is.integer(cohort(x))) expect_equal(length(cohort(x)), num_patients(x)) expect_equal(doses_given(x), c(1,1,1, 2,2,2)) expect_true(is.integer(doses_given(x))) expect_equal(length(doses_given(x)), num_patients(x)) expect_equal(tox(x), c(0,0,0, 0,1,1)) expect_true(is.integer(tox(x))) expect_equal(length(tox(x)), num_patients(x)) expect_true(is.numeric(weight(x))) expect_equal(length(weight(x)), num_patients(x)) expect_equal(num_tox(x), 2) expect_true(is.integer(num_tox(x))) expect_true(all((model_frame(x) - data.frame(patient = c(1,2,3,4,5,6), cohort = c(1,1,1,2,2,2), dose = c(1,1,1,2,2,2), tox = c(0,0,0,0,1,1), weight = c(1,1,1,1,1,1))) == 0)) expect_equal(nrow(model_frame(x)), num_patients(x)) expect_equal(num_doses(x), 5) expect_true(is.integer(tox(x))) expect_equal(dose_indices(x), 1:5) expect_true(is.integer(dose_indices(x))) expect_equal(length(dose_indices(x)), num_doses(x)) expect_equal(recommended_dose(x), 1) expect_true(is.integer(recommended_dose(x))) expect_equal(length(recommended_dose(x)), 1) expect_equal(continue(x), TRUE) expect_true(is.logical(continue(x))) expect_equal(n_at_dose(x), c(3,3,0,0,0)) expect_true(is.integer(n_at_dose(x))) expect_equal(length(n_at_dose(x)), num_doses(x)) expect_equal(n_at_dose(x, dose = 0), 0) expect_true(is.integer(n_at_dose(x, dose = 0))) expect_equal(length(n_at_dose(x, dose = 0)), 1) expect_equal(n_at_dose(x, dose = 1), 3) expect_true(is.integer(n_at_dose(x, dose = 1))) expect_equal(length(n_at_dose(x, dose = 1)), 1) expect_equal(n_at_dose(x, dose = 'recommended'), 3) expect_true(is.integer(n_at_dose(x, dose = 'recommended'))) expect_equal(length(n_at_dose(x, dose = 'recommended')), 1) expect_equal(n_at_recommended_dose(x), 3) expect_true(is.integer(n_at_recommended_dose(x))) expect_equal(length(n_at_recommended_dose(x)), 1) expect_equal(is_randomising(x), FALSE) expect_true(is.logical(is_randomising(x))) expect_equal(length(is_randomising(x)), 1) expect_equal(unname(prob_administer(x)), c(0.5,0.5,0,0,0)) expect_true(is.numeric(prob_administer(x))) expect_equal(length(prob_administer(x)), num_doses(x)) expect_equal(tox_at_dose(x), c(0,2,0,0,0)) expect_true(is.integer(tox_at_dose(x))) expect_equal(length(tox_at_dose(x)), num_doses(x)) expect_true(is.numeric(empiric_tox_rate(x))) expect_equal(length(empiric_tox_rate(x)), num_doses(x)) expect_true(is.numeric(mean_prob_tox(x))) expect_equal(length(mean_prob_tox(x)), num_doses(x)) expect_true(is.numeric(median_prob_tox(x))) expect_equal(length(median_prob_tox(x)), num_doses(x)) expect_true(is.logical(dose_admissible(x))) expect_equal(length(dose_admissible(x)), num_doses(x)) expect_true(is.numeric(prob_tox_quantile(x, p = 0.9))) expect_equal(length(prob_tox_quantile(x, p = 0.9)), num_doses(x)) expect_true(is.numeric(prob_tox_exceeds(x, 0.5))) expect_equal(length(prob_tox_exceeds(x, 0.5)), num_doses(x)) expect_true(is.logical(supports_sampling(x))) expect_true(is.data.frame(prob_tox_samples(x))) expect_true(is.data.frame(prob_tox_samples(x, tall = TRUE))) # Expect summary to not error. This is how that is tested, apparently: expect_error(summary(x), NA) expect_output(print(x)) expect_true(tibble::is_tibble(as_tibble(x))) expect_true(nrow(as_tibble(x)) >= num_doses(x)) })