# File tests/testthat/test-proposal-bdstrattnt.R in package ergm, part of the # Statnet suite of packages for network analysis, https://statnet.org . # # This software is distributed under the GPL-3 license. It is free, # open source, and has the attribution requirements (GPL Section 7) at # https://statnet.org/attribution . # # Copyright 2003-2024 Statnet Commons ################################################################################ test_that("BDStratTNT works with undirected unipartite networks and bd/blocks only", { nw <- network.initialize(1000, directed = FALSE) target.stats <- c(500) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 1), control = control.san(SAN.maxit = 1, SAN.nsteps = 2e3)) sr <- summary(nws ~ edges + concurrent) expect_equal(unname(sr), c(500, 0)) target.stats <- c(1000) nws2 <- san(nws ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 2), control = control.san(SAN.maxit = 1, SAN.nsteps = 2e3)) sr2 <- summary(nws2 ~ edges + degree(2) + degrange(3)) expect_true(all(abs(sr2 - c(1000, 1000, 0)) <= c(1, 2, 0))) target.stats <- c(1500) nws22 <- san(nws2 ~ edges, target.stats = target.stats, constraints = ~bd(maxout=3), control = control.san(SAN.maxit = 1, SAN.nsteps = 2e3)) sr22 <- summary(nws22 ~ edges + degree(3) + degrange(4)) expect_true(all(abs(sr22 - c(1500, 1000, 0)) <= c(2, 2, 0))) ## may be off by small amount target.stats <- c(1000) nws2a <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 2), control=control.san(SAN.maxit = 1, SAN.nsteps = 4e3)) sr2a <- summary(nws2a ~ edges + degree(2) + degrange(3)) expect_true(all(abs(sr2a - c(1000, 1000, 0)) <= c(1, 2, 0))) ## may be off by small amount target.stats <- c(1500) nws22a <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 3), control = control.san(SAN.maxit = 1, SAN.nsteps = 6e3)) sr22a <- summary(nws22a ~ edges + degree(3) + degrange(4)) expect_true(all(abs(sr22a - c(1500, 1000, 0)) <= c(2, 2, 0))) nw %v% "sex" <- rep(c("A", "B"), 500) target.stats <- c(500) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 1) + blocks(attr = "sex", levels2 = diag(TRUE, 2)), control = control.san(SAN.maxit = 1, SAN.nsteps = 2e3)) sr3 <- summary(nws ~ edges + concurrent + nodematch("sex")) expect_equal(unname(sr3), c(500, 0, 0)) target.stats <- c(500) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 1) + blocks(attr = "sex", levels2 = !diag(TRUE, 2)), control = control.san(SAN.maxit = 1, SAN.nsteps = 2e3)) sr4 <- summary(nws ~ edges + concurrent + nodematch("sex")) expect_equal(unname(sr4), c(500, 0, 500)) ## may be off by small amount target.stats <- c(1500) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 3) + blocks(attr = "sex", levels2 = diag(TRUE, 2)), control = control.san(SAN.maxit = 1, SAN.nsteps = 6e3)) sr5 <- summary(nws ~ edges + degree(3) + degrange(4) + nodematch("sex")) expect_true(all(abs(sr5 - c(1500, 1000, 0, 0)) <= c(2, 4, 0, 2))) ## may be off by small amount target.stats <- c(1500) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 3) + blocks(attr = "sex", levels2 = !diag(TRUE, 2)), control = control.san(SAN.maxit = 1, SAN.nsteps = 6e3)) sr6 <- summary(nws ~ edges + degree(3) + degrange(4) + nodematch("sex")) expect_true(all(abs(sr6 - c(1500, 1000, 0, 1500)) <= c(4, 4, 0, 4))) target.stats <- c(1000) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 3) + blocks(attr = "sex", levels2 = diag(TRUE, 2)), control = control.san(SAN.maxit = 1, SAN.nsteps = 4e3)) sr7 <- summary(nws ~ edges + degrange(4) + nodematch("sex")) expect_equal(unname(sr7), c(1000, 0, 0)) target.stats <- c(1000) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 3) + blocks(attr = "sex", levels2 = !diag(TRUE, 2)), control = control.san(SAN.maxit = 1, SAN.nsteps = 4e3)) sr8 <- summary(nws ~ edges + degrange(4) + nodematch("sex")) expect_equal(unname(sr8), c(1000, 0, 1000)) }) test_that("BDStratTNT works with bipartite networks and bd/blocks only", { nw <- network.initialize(900, bipartite = 100, directed = FALSE) target.stats <- c(100) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 1), control = control.san(SAN.maxit = 1, SAN.nsteps = 4e2)) sr <- summary(nws ~ edges + b1degree(1) + degrange(2)) expect_equal(unname(sr), c(100, 100, 0)) target.stats <- c(200) nws2 <- san(nws ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 2), control = control.san(SAN.maxit = 1, SAN.nsteps = 4e2)) sr2 <- summary(nws2 ~ edges + b1degree(2) + degrange(3)) expect_true(all(abs(sr2 - c(200, 100, 0)) <= c(0, 0, 0))) target.stats <- c(300) nws22 <- san(nws2 ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 3), control = control.san(SAN.maxit = 1, SAN.nsteps = 4e2)) sr22 <- summary(nws22 ~ edges + b1degree(3) + degrange(4)) expect_true(all(abs(sr22 - c(300, 100, 0)) <= c(0, 0, 0))) target.stats <- c(200) nws2a <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 2), control = control.san(SAN.maxit = 1, SAN.nsteps = 8e2)) sr2a <- summary(nws2a ~ edges + b1degree(2) + degrange(3)) expect_true(all(abs(sr2a - c(200, 100, 0)) <= c(0, 0, 0))) target.stats <- c(300) nws22a <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 3), control = control.san(SAN.maxit = 1, SAN.nsteps = 1.2e3)) sr22a <- summary(nws22a ~ edges + b1degree(3) + degrange(4)) expect_true(all(abs(sr22a - c(300, 100, 0)) <= c(0, 0, 0))) nw %v% "sex" <- c(rep(c("A", "B"), 50), rep(c("A", "B"), 450)) target.stats <- c(100) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 1) + blocks(attr = "sex", levels2 = diag(TRUE, 2)), control = control.san(SAN.maxit = 1, SAN.nsteps = 4e2)) sr3 <- summary(nws ~ edges + concurrent + nodematch("sex")) expect_equal(unname(sr3), c(100, 0, 0)) target.stats <- c(100) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 1) + blocks(attr = "sex", levels2 = !diag(TRUE, 2)), control = control.san(SAN.maxit = 1, SAN.nsteps = 4e2)) sr4 <- summary(nws ~ edges + concurrent + nodematch("sex")) expect_equal(unname(sr4), c(100, 0, 100)) target.stats <- c(300) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 3) + blocks(attr = "sex", levels2 = diag(TRUE, 2)), control = control.san(SAN.maxit = 1, SAN.nsteps = 1.2e3)) sr5 <- summary(nws ~ edges + b1degree(3) + degrange(4) + nodematch("sex")) expect_true(all(abs(sr5 - c(300, 100, 0, 0)) <= c(0, 0, 0, 0))) target.stats <- c(300) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 3) + blocks(attr = "sex", levels2 = !diag(TRUE, 2)), control = control.san(SAN.maxit = 1, SAN.nsteps = 1.2e3)) sr6 <- summary(nws ~ edges + b1degree(3) + degrange(4) + nodematch("sex")) expect_true(all(abs(sr6 - c(300, 100, 0, 300)) <= c(0, 0, 0, 0))) target.stats <- c(200) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 3) + blocks(attr = "sex", levels2 = diag(TRUE, 2)), control = control.san(SAN.maxit = 1, SAN.nsteps = 8e2)) sr7 <- summary(nws ~ edges + degrange(4) + nodematch("sex")) expect_equal(unname(sr7), c(200, 0, 0)) target.stats <- c(200) nws <- san(nw ~ edges, target.stats = target.stats, constraints = ~bd(maxout = 3) + blocks(attr = "sex", levels2 = !diag(TRUE, 2)), control = control.san(SAN.maxit = 1, SAN.nsteps = 8e2)) sr8 <- summary(nws ~ edges + degrange(4) + nodematch("sex")) expect_equal(unname(sr8), c(200, 0, 200)) }) test_that("BDStratTNT works with undirected unipartite networks", { nw <- network.initialize(1000, dir=FALSE) nw %v% "race" <- c(rep("A", 20), rep("B", 20), rep("W", 960)) pmat <- matrix(1, 3, 3) diag(pmat) <- c(2, 2, 30) target.stats <- c(1000, 50, 50, 800) nws <- san(nw ~ edges + nodematch("race", levels = NULL, diff = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 5e3), constraints = ~strat(attr = "race", pmat = pmat)) sr <- summary(nws ~ edges + nodematch("race", levels = NULL, diff = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) # to test initialization code, redo the SAN run with different targets, # starting from the previous network pmat <- matrix(10, 3, 3) diag(pmat) <- c(7, 7, 20) target.stats <- c(1000, 125, 125, 350) nws2 <- san(nws ~ edges + nodematch("race", levels = NULL, diff = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 1e4), constraints = ~strat(attr = "race", pmat = pmat)) sr <- summary(nws2 ~ edges + nodematch("race",levels=NULL, diff=TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) ## redo above with lower target stats and a nontrivial upper bound on degree nw <- network.initialize(1000, directed = FALSE) nw %v% "race" <- c(rep("A", 20), rep("B", 20), rep("W", 960)) pmat <- matrix(1, 3, 3) diag(pmat) <- c(2, 2, 10) target.stats <- c(160, 20, 20, 100) nws <- san(nw ~ edges + nodematch("race", levels = NULL, diff = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 5e3), constraints = ~bd(maxout = 5) + strat(attr = "race", pmat = pmat)) sr <- summary(nws ~ edges + nodematch("race", levels = NULL, diff = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) expect_equal(unname(summary(nws ~ degrange(6))), 0) # to test initialization code, redo the SAN run with different targets, starting from the previous network pmat <- matrix(10, 3, 3) diag(pmat) <- c(7, 7, 20) target.stats <- c(530, 30, 30, 450) nws2 <- san(nws ~ edges + nodematch("race", levels = NULL, diff = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 1e4), constraints = ~bd(maxout = 5) + strat(attr = "race", pmat = pmat)) sr <- summary(nws2 ~ edges + nodematch("race", levels = NULL, diff = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) expect_equal(unname(summary(nws2 ~ degrange(6))), 0) ## again but now also with a levels2 argument nw <- network.initialize(1000, directed = FALSE) nw %v% "race" <- c(rep("A", 20), rep("B", 20), rep("W", 960)) nw %v% "sex" <- rep(c("M", "F"), 500) pmat <- matrix(1, 3, 3) diag(pmat) <- c(2, 2, 10) target.stats <- c(80, 10, 10, 50) nws <- san(nw ~ edges + nodematch("race", levels = NULL, diff = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 5e3), constraints = ~bd(maxout = 5) + blocks(attr = "sex", levels2 = diag(TRUE, 2)) + strat(attr = "race", pmat = pmat)) sr <- summary(nws ~ edges + nodematch("race", levels = NULL, diff = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) expect_equal(unname(summary(nws ~ degrange(6))), 0) expect_equal(unname(summary(nws ~ nodematch("sex"))), 0) # to test initialization code, redo the SAN run with different targets, starting from the previous network pmat <- matrix(10, 3, 3) diag(pmat) <- c(7, 7, 20) target.stats <- c(285, 15, 15, 230) nws2 <- san(nws ~ edges + nodematch("race", levels = NULL, diff = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 1e4), constraints = ~bd(maxout = 5) + blocks(attr = "sex", levels2 = diag(TRUE, 2)) + strat(attr = "race", pmat = pmat)) sr <- summary(nws2 ~ edges + nodematch("race", levels = NULL, diff = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) expect_equal(unname(summary(nws2 ~ degrange(6))), 0) expect_equal(unname(summary(nws2 ~ nodematch("sex"))), 0) ## this time with only same-sex ties nw <- network.initialize(1000, directed = FALSE) nw %v% "race" <- c(rep("A", 20), rep("B", 20), rep("W", 960)) nw %v% "sex" <- rep(c("M", "F"), 500) pmat <- matrix(1, 3, 3) diag(pmat) <- c(2, 2, 10) target.stats <- c(80, 10, 10, 50) nws <- san(nw ~ edges + nodematch("race", levels = NULL, diff = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 5e3), constraints = ~bd(maxout = 5) + blocks(attr = "sex", levels2 = !diag(TRUE, 2)) + strat(attr = "race", pmat = pmat)) sr <- summary(nws ~ edges + nodematch("race", levels = NULL, diff = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) expect_equal(unname(summary(nws ~ degrange(6))), 0) expect_equal(unname(summary(nws ~ nodematch("sex"))), network.edgecount(nws)) # to test initialization code, redo the SAN run with different targets, starting from the previous network pmat <- matrix(10, 3, 3) diag(pmat) <- c(7, 7, 20) target.stats <- c(285, 15, 15, 230) nws2 <- san(nws ~ edges + nodematch("race", levels = NULL, diff = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 1e4), constraints = ~bd(maxout = 5) + blocks(attr = "sex", levels2 = !diag(TRUE, 2)) + strat(attr = "race", pmat = pmat)) sr <- summary(nws2 ~ edges + nodematch("race",levels=NULL, diff=TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) expect_equal(unname(summary(nws2 ~ degrange(6))), 0) expect_equal(unname(summary(nws2 ~ nodematch("sex"))), network.edgecount(nws2)) }) test_that("BDStratTNT works with bipartite networks", { nw <- network.initialize(900, bipartite = 100, directed = FALSE) nw %v% "race" <- c(rep("B", 20), rep("W", 60), rep("A", 40), rep("B", 20), rep("W", 860)) pmat <- matrix(c(0, 100, 2, 2, 0, 2, 100, 100, 0), 3, 3, byrow = TRUE) target.stats <- c(0, 2, 100, 100, 0, 100, 2, 2, 0) nws <- san(nw ~ nodemix("race", levels2 = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 5e3), constraints = ~strat(attr = "race", pmat = pmat)) sr <- summary(nws ~ nodemix("race", levels2 = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) # redo with different targets, starting from previous network pmat2 <- matrix(c(100, 10, 0, 0, 100, 100, 10, 10, 0), 3, 3, byrow = TRUE) pmat3 <- (pmat + pmat2)/2 target.stats <- c(pmat2) nws2 <- san(nws ~ nodemix("race", levels2 = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 1e4), constraints = ~strat(attr = "race", pmat = pmat3)) sr <- summary(nws2 ~ nodemix("race", levels2 = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) # redo above but with a nontrivial upper bound on degree nw <- network.initialize(900, bipartite = 100, directed = FALSE) nw %v% "race" <- c(rep("B", 20), rep("W", 60), rep("A", 40), rep("B", 20), rep("W", 860)) pmat <- matrix(c(0, 45, 2, 2, 0, 2, 90, 45, 0), 3, 3, byrow = TRUE) target.stats <- c(0, 2, 90, 45, 0, 45, 2, 2, 0) nws <- san(nw ~ nodemix("race", levels2 = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 5e3), constraints = ~bd(maxout = 5) + strat(attr = "race", pmat = pmat)) sr <- summary(nws ~ nodemix("race",levels2=TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) expect_equal(unname(summary(nws ~ degrange(6))), 0) # redo with different targets, starting from previous network pmat2 <- matrix(c(85, 10, 0, 0, 42, 43, 10, 10, 0), 3, 3, byrow = TRUE) pmat3 <- (pmat + pmat2)/2 target.stats <- c(pmat2) nws2 <- san(nws ~ nodemix("race", levels2 = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 1e4), constraints = ~bd(maxout = 5) + strat(attr = "race", pmat = pmat3)) sr <- summary(nws2 ~ nodemix("race", levels2 = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) expect_equal(unname(summary(nws2 ~ degrange(6))), 0) # ditto but also with levels2 nw <- network.initialize(900, bipartite = 100, directed = FALSE) nw %v% "race" <- c(rep("B", 20), rep("W", 60), rep("A", 40), rep("B", 20), rep("W", 860)) nw %v% "sex" <- rep(c("M", "F"), 500) pmat <- matrix(c(0, 45, 2, 2, 0, 2, 90, 45, 0), 3, 3, byrow = TRUE) target.stats <- round(c(0, 2, 90, 45, 0, 45, 2, 2, 0)/2) nws <- san(nw ~ nodemix("race", levels2 = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 5e3), constraints = ~bd(maxout = 5) + blocks(attr = "sex", levels2 = diag(TRUE, 2)) + strat(attr = "race", pmat = pmat)) sr <- summary(nws ~ nodemix("race", levels2 = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) expect_equal(unname(summary(nws ~ degrange(6))), 0) expect_equal(unname(summary(nws ~ nodematch("sex"))), 0) # redo with different targets, starting from previous network pmat2 <- matrix(c(85, 10, 0, 0, 42, 43, 10, 10, 0), 3, 3, byrow = TRUE) pmat3 <- (pmat + pmat2)/2 target.stats <- round(c(pmat2)/2) nws2 <- san(nws ~ nodemix("race", levels2 = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 1e4), constraints = ~bd(maxout = 5) + blocks(attr = "sex", levels2 = diag(TRUE, 2)) + strat(attr = "race", pmat = pmat3)) sr <- summary(nws2 ~ nodemix("race", levels2 = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) expect_equal(unname(summary(nws2 ~ degrange(6))), 0) expect_equal(unname(summary(nws2 ~ nodematch("sex"))), 0) # this time with only same-sex ties nw <- network.initialize(900, bipartite = 100, directed = FALSE) nw %v% "race" <- c(rep("B", 20), rep("W", 60), rep("A", 40), rep("B", 20), rep("W", 860)) nw %v% "sex" <- rep(c("M", "F"), 500) pmat <- matrix(c(0, 45, 2, 2, 0, 2, 90, 45, 0), 3, 3, byrow = TRUE) target.stats <- round(c(0, 2, 90, 45, 0, 45, 2, 2, 0)/2) nws <- san(nw ~ nodemix("race", levels2 = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 5e3), constraints = ~bd(maxout = 5) + blocks(attr = "sex", levels2 = !diag(TRUE, 2)) + strat(attr = "race", pmat = pmat)) sr <- summary(nws ~ nodemix("race", levels2 = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) expect_equal(unname(summary(nws ~ degrange(6))), 0) expect_equal(unname(summary(nws ~ nodematch("sex"))), network.edgecount(nws)) # redo with different targets, starting from previous network pmat2 <- matrix(c(85, 10, 0, 0, 42, 43, 10, 10, 0), 3, 3, byrow = TRUE) pmat3 <- (pmat + pmat2)/2 target.stats <- round(c(pmat2)/2) nws2 <- san(nws ~ nodemix("race", levels2 = TRUE), target.stats = target.stats, control = control.san(SAN.maxit = 1, SAN.nsteps = 1e4), constraints = ~bd(maxout = 5) + blocks(attr = "sex", levels2 = !diag(TRUE, 2)) + strat(attr = "race", pmat = pmat3)) sr <- summary(nws2 ~ nodemix("race", levels2 = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) expect_equal(unname(summary(nws2 ~ degrange(6))), 0) expect_equal(unname(summary(nws2 ~ nodematch("sex"))), network.edgecount(nws2)) }) test_that("BDStratTNT works with impossible targets", { nw <- network.initialize(1000, directed = FALSE) nw %v% "race" <- c(rep("A", 30), rep("B", 30), rep("W", 940)) nw %v% "sex" <- rep(c("W", "X", "Y", "Z"), 250) levels2 <- matrix(0, 4, 4) levels2[1, 3] <- levels2[3, 1] <- levels2[2, 2] <- levels2[3, 4] <- levels2[4, 3] <- levels2[4, 4] <- 1 levels2 <- levels2 > 0 pmat <- matrix(c(25, 50, 5, 50, 25, 5, 5, 5, 100), 3, 3, byrow = TRUE) # impossible to hit these exactly target.stats <- c(211, 25, 50, 25, 5, 5, 100) nws <- san(nw ~ edges + nodemix("race", levels2 = TRUE), target.stats = target.stats, constraints = ~bd(maxout = 4) + blocks(attr = "sex", levels2 = levels2) + strat(attr = "race", pmat = pmat)) sr <- summary(nws ~ edges + nodemix("race", levels2 = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats + 1)) expect_equal(unname(summary(nws ~ degrange(5))), 0) # and check sex nodemix srs <- summary(nws ~ nodemix("sex", levels2 = TRUE)) expect_true(all(srs[as.logical(levels2[upper.tri(levels2, diag = TRUE)])] == 0)) }) test_that("BDStratTNT simulates reasonably", { for(deg_bound in c(1, 3)) { net_size <- 2000L nw <- network.initialize(net_size, directed = FALSE) vattr <- sample(c("A", "B", "C"), net_size, TRUE) sex <- sample(c("X", "Y", "Z"), net_size, TRUE) nw %v% "vattr" <- vattr nw %v% "sex" <- sex levels2 <- matrix(c(1, 0, 1, 0, 0, 0, 1, 0, 0), 3, 3) levels2 <- levels2 > 0 pmat <- 1 - matrix(c(1, 0, 0, 0, 1, 0, 0, 0, 0), 3, 3) nw_sim <- nw for(i in 1:2) { nw_sim <- simulate(nw_sim ~ edges, coef = c(0), constraints = ~bd(maxout = deg_bound) + blocks(attr = "sex", levels2 = levels2) + strat(attr = "vattr", pmat = pmat), output = "network") summ_stats <- summary(nw_sim ~ nodemix("vattr", levels2 = TRUE) + nodemix("sex", levels2 = TRUE) + degrange(deg_bound + 1)) expect_true(summ_stats["mix.vattr.A.A"] == 0) expect_true(summ_stats["mix.vattr.B.B"] == 0) expect_true(summ_stats["mix.vattr.A.B"] > 0) expect_true(summ_stats["mix.vattr.A.C"] > 0) expect_true(summ_stats["mix.vattr.B.C"] > 0) expect_true(summ_stats["mix.vattr.C.C"] > 0) expect_true(summ_stats["mix.sex.X.X"] == 0) expect_true(summ_stats["mix.sex.X.Z"] == 0) expect_true(summ_stats["mix.sex.X.Y"] > 0) expect_true(summ_stats["mix.sex.Y.Y"] > 0) expect_true(summ_stats["mix.sex.Y.Z"] > 0) expect_true(summ_stats["mix.sex.Z.Z"] > 0) expect_true(summ_stats[paste0("deg", deg_bound + 1, "+")] == 0) } } }) test_that("BDStratTNT simulates reasonably with heterogeneous degree bounds", { for(deg_bound in c(1, 3)) { net_size <- 2000L nw <- network.initialize(net_size, directed = FALSE) vattr <- sample(c("A", "B", "C"), net_size, TRUE) sex <- sample(c(1, 2, 3), net_size, TRUE) attribs <- matrix(FALSE, nrow = net_size, ncol = 3) attribs[cbind(seq_len(net_size), sex)] <- TRUE nw %v% "vattr" <- vattr nw %v% "sex" <- sex nw %v% "blocks_attr" <- sample(1:6, net_size, TRUE) blocks_levels_2 <- matrix(FALSE, 6, 6) blocks_levels_2[cbind(c(1, 2, 2, 4), c(5, 2, 3, 4))] <- TRUE blocks_levels_2 <- blocks_levels_2 | t(blocks_levels_2) levels2 <- matrix(c(1, 0, 1, 0, 0, 0, 1, 0, 0), 3, 3) levels2 <- levels2 > 0 pmat <- 1 - matrix(c(1, 0, 0, 0, 1, 0, 0, 0, 0), 3, 3) nw_sim <- nw maxout <- matrix(0, nrow = net_size, ncol = 3) for(row_index in 1:3) { for(col_index in 1:3) { if(!levels2[row_index, col_index]) { maxout[sex == row_index, col_index] <- deg_bound } } } maxout <- maxout + round(5*(runif(length(maxout)) - 1/2)) maxout[maxout < 0] <- 0 for(i in 1:2) { nw_sim <- simulate(nw_sim ~ edges, coef = c(0), constraints = ~bd(attribs = attribs, maxout = maxout) + blocks(~blocks_attr, levels2 = blocks_levels_2) + strat(attr = "vattr", pmat = pmat), output = "network") summ_stats_vattr <- summary(nw_sim ~ nodemix("vattr", levels2 = TRUE)) expect_true(all(summ_stats_vattr[c(1,3)] == 0)) expect_true(all(summ_stats_vattr[-c(1,3)] > 0)) summ_stats_blocks_attr <- summary(nw_sim ~ nodemix("blocks_attr", levels2 = TRUE)) expect_true(all(summ_stats_blocks_attr[c(3,5,10,11)] == 0)) expect_true(all(summ_stats_blocks_attr[-c(3,5,10,11)] > 0)) el <- as.edgelist(nw_sim) degs <- table(from = factor(c(el), levels = seq_len(net_size)), to = factor(sex[c(el[, c(2, 1)])], levels = seq_len(3))) expect_true(all(degs <= maxout)) } } }) test_that("BDStratTNT simulates reasonably with bipartite heterogeneous degree bounds", { for(deg_bound in c(1, 3)) { net_size <- 2000L bip <- 700L nw <- network.initialize(net_size, directed = FALSE, bipartite = bip) vattr <- c(sample(c("A", "B", "C", "D"), bip, TRUE), sample(c("X", "Y", "Z"), net_size - bip, TRUE)) sex <- c(sample(c(1, 2, 3, 4, 5), bip, TRUE), sample(c(6, 7, 8, 9, 10, 11), net_size - bip, TRUE)) attribs <- matrix(FALSE, nrow = net_size, ncol = length(unique(sex))) attribs[cbind(seq_len(net_size), sex)] <- TRUE nw %v% "vattr" <- vattr nw %v% "sex" <- sex nw %v% "blocks_attr" <- c(sample(c(1, 2, 3), bip, TRUE), sample(c(4, 5, 6, 7), net_size - bip, TRUE)) blocks_levels_2 <- matrix(FALSE, nrow = 3, 4) blocks_levels_2[cbind(c(3, 2, 2), c(1, 2, 3))] <- TRUE levels2 <- matrix(as.logical(round(runif(11*11))), nrow = 11, ncol = 11) levels2 <- levels2 | t(levels2) pmat <- 1 - matrix(c(1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1), nrow = 4, ncol = 3) nw_sim <- nw maxout <- matrix(0, nrow = net_size, ncol = 11) for(row_index in 1:11) { for(col_index in 1:11) { if(!levels2[row_index, col_index]) { maxout[sex == row_index, col_index] <- deg_bound } } } maxout <- maxout + round(5*(runif(length(maxout)) - 1/2)) maxout[maxout < 0] <- 0 for(i in 1:2) { nw_sim <- simulate(nw_sim ~ edges, coef = c(0), constraints = ~bd(attribs = attribs, maxout = maxout) + blocks(~blocks_attr, levels2 = blocks_levels_2) + strat(attr = "vattr", pmat = pmat), output = "network") summ_stats_vattr <- summary(nw_sim ~ nodemix("vattr", levels2 = TRUE)) expect_true(all(summ_stats_vattr[c(1, 5, 7, 12)] == 0)) expect_true(all(summ_stats_vattr[-c(1, 5, 7, 12)] > 0)) summ_stats_blocks_attr <- summary(nw_sim ~ nodemix("blocks_attr", levels2 = TRUE)) expect_true(all(summ_stats_blocks_attr[c(3, 5, 8)] == 0)) expect_true(all(summ_stats_blocks_attr[-c(3, 5, 8)] > 0)) el <- as.edgelist(nw_sim) degs <- table(from = factor(c(el), levels = seq_len(net_size)), to = factor(sex[c(el[, c(2, 1)])], levels = seq_len(11))) expect_true(all(degs <= maxout)) } } }) test_that("BDStratTNT simulates reasonably with directed heterogeneous degree bounds", { for(deg_bound in c(1, 3)) { net_size <- 2000L nw <- network.initialize(net_size, directed = TRUE) vattr <- sample(c("A", "B", "C"), net_size, TRUE) sex <- sample(c(1, 2, 3), net_size, TRUE) attribs <- matrix(FALSE, nrow = net_size, ncol = 3) attribs[cbind(seq_len(net_size), sex)] <- TRUE nw %v% "vattr" <- vattr nw %v% "sex" <- sex nw %v% "blocks_attr" <- sample(1:6, net_size, TRUE) blocks_levels_2 <- matrix(FALSE, 6, 6) blocks_levels_2[cbind(c(5, 2, 2, 4), c(1, 2, 3, 4))] <- TRUE levels2 <- matrix(c(1, 0, 0, 0, 0, 1, 1, 0, 0), 3, 3) levels2 <- levels2 > 0 pmat <- 1 - matrix(c(1, 0, 0, 0, 0, 0, 0, 1, 0), 3, 3) nw_sim <- nw maxout <- matrix(0, nrow = net_size, ncol = 3) for(row_index in 1:3) { for(col_index in 1:3) { if(!levels2[row_index, col_index]) { maxout[sex == row_index, col_index] <- deg_bound } } } maxout <- maxout + round(5*(runif(length(maxout)) - 1/2)) maxout[maxout < 0] <- 0 maxin <- maxout + round(5*(runif(length(maxout)) - 1/2)) maxin[maxin < 0] <- 0 for(i in 1:2) { nw_sim <- simulate(nw_sim ~ edges, coef = c(0), constraints = ~bd(attribs = attribs, maxout = maxout, maxin = maxin) + blocks(~blocks_attr, levels2 = blocks_levels_2) + strat(attr = "vattr", pmat = pmat), output = "network") summ_stats_vattr <- summary(nw_sim ~ nodemix("vattr", levels2 = TRUE)) expect_true(all(summ_stats_vattr[c(1, 8)] == 0)) expect_true(all(summ_stats_vattr[-c(1, 8)] > 0)) summ_stats_blocks_attr <- summary(nw_sim ~ nodemix("blocks_attr" , levels2 = TRUE)) expect_true(all(summ_stats_blocks_attr[c(5, 8, 14, 22)] == 0)) expect_true(all(summ_stats_blocks_attr[-c(5, 8, 14, 22)] > 0)) el <- as.edgelist(nw_sim) out_degs <- table(from = factor(c(el[, 1]), levels = seq_len(net_size)), to = factor(sex[c(el[, 2])], levels = seq_len(3))) in_degs <- table(from = factor(c(el[, 2]), levels = seq_len(net_size)), to = factor(sex[c(el[, 1])], levels = seq_len(3))) expect_true(all(out_degs <= maxout)) expect_true(all(in_degs <= maxin)) } } }) test_that("BDStratTNT works with degree bound saturation", { nw <- network.initialize(900, directed = FALSE) nw %v% "race" <- rep(c("A", "B", "C"), times = c(30, 30, 840)) nw %v% "sex" <- rep(c("X", "Y", "Z"), length.out = 900) pmat <- matrix(1, 3, 3) # mix.race.A.A mix.race.A.B mix.race.B.B mix.race.A.C mix.race.B.C mix.race.C.C target.stats <- c(425, 10, 5, 10, 0, 0, 400.01) nws <- san(nw ~ edges + nodemix("race", levels2 = TRUE), target.stats = target.stats, constraints = ~bd(maxout = 1) + blocks(attr = "sex", levels2 = matrix(c(TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE), 3, 3)) + strat(attr = "race", pmat = pmat), control = control.san(SAN.invcov.diag = TRUE, SAN.maxit = 4, SAN.nsteps = 5e4)) sr <- summary(nws ~ edges + nodemix("race", levels2 = TRUE)) expect_true(all(abs(sr - target.stats) <= pmax(1, 0.05*target.stats))) expect_true(all(summary(nws ~ concurrent + nodemix("sex", levels2=c(1, 5))) == 0)) }) test_that("BDStratTNT constrains undirected appropriately", { nw <- network.initialize(100, directed = FALSE) nw %v% "attr" <- rep(c("A", "B", "C", "D", "E"), each = 20) nw %v% "strat_attr" <- rep(1:3, length.out = 100) nw[cbind(1:10, 30:21)] <- 1 nw[cbind(44:53, 99:90)] <- 1 nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~attr, levels2 = c(2, 13)) + strat(~strat_attr, pmat = matrix(2 + runif(9), 3, 3))) expect_true(all(nws[cbind(1:10, 30:21)] == 1)) expect_true(all(nws[cbind(44:53, 99:90)] == 1)) expect_true(summary(nws ~ nodemix(~attr, levels2 = 2)) == 10) expect_true(summary(nws ~ nodemix(~attr, levels2 = 13)) == 10) expect_true(summary(nws ~ edges) > 1000) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(maxout = 1) + blocks(~attr, levels2 = c(2, 13)) + strat(~strat_attr, pmat = matrix(2 + runif(9), 3, 3))) expect_true(all(nws[cbind(1:10, 30:21)] == 1)) expect_true(all(nws[cbind(44:53, 99:90)] == 1)) expect_true(summary(nws ~ nodemix(~attr, levels2 = 2)) == 10) expect_true(summary(nws ~ nodemix(~attr, levels2 = 13)) == 10) expect_true(summary(nws ~ edges) > 30) nw <- network.initialize(100, directed = FALSE) nw %v% "attr" <- rep(c("B", "A", "C", "D", "E"), each = 20) nw %v% "strat_attr" <- rep(1:3, length.out = 100) nw[cbind(1:10, 30:21)] <- 1 nw[cbind(44:53, 99:90)] <- 1 nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~attr, levels2 = c(2, 13)) + strat(~strat_attr, pmat = matrix(2 + runif(9), 3, 3))) expect_true(all(nws[cbind(1:10, 30:21)] == 1)) expect_true(all(nws[cbind(44:53, 99:90)] == 1)) expect_true(summary(nws ~ nodemix(~attr, levels2 = 2)) == 10) expect_true(summary(nws ~ nodemix(~attr, levels2 = 13)) == 10) expect_true(summary(nws ~ edges) > 1000) }) test_that("BDStratTNT constrains bipartite appropriately", { nw <- network.initialize(100, bipartite = 30, directed = FALSE) nw %v% "attr" <- c(rep(c("A", "B", "C"), each = 10), rep(c("D", "E", "F", "G"), times = c(20, 20, 20, 10))) nw %v% "strat_attr" <- rep(1:3, length.out = 100) nw[cbind(1:10, 100:91)] <- 1 nw[cbind(25:21, 60:56)] <- 1 nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~attr, levels2 = c(6,10)) + strat(~strat_attr, pmat = matrix(2 + runif(9), 3, 3))) expect_true(all(nws[cbind(1:10, 100:91)] == 1)) expect_true(all(nws[cbind(25:21, 60:56)] == 1)) expect_true(summary(nws ~ nodemix(~attr, levels2 = 6)) == 5) expect_true(summary(nws ~ nodemix(~attr, levels2 = 10)) == 10) expect_true(summary(nws ~ edges) > 500) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(maxout = 1) + blocks(~attr, levels2 = c(6, 10)) + strat(~strat_attr, pmat = matrix(2 + runif(9), 3, 3))) expect_true(all(nws[cbind(1:10, 100:91)] == 1)) expect_true(all(nws[cbind(25:21, 60:56)] == 1)) expect_true(summary(nws ~ nodemix(~attr, levels2 = 6)) == 5) expect_true(summary(nws ~ nodemix(~attr, levels2 = 10)) == 10) expect_true(summary(nws ~ edges) > 20) }) test_that("BDStratTNT handles undirected arguments correctly", { nw <- network.initialize(100, directed = FALSE) nw %v% "bd_attr" <- rep(1:3, length.out = 100) nw %v% "strat_attr" <- rep(1:7, length.out = 100) nws <- simulate(nw ~ edges, coef = c(0), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(attr = ~bd_attr, levels2 = matrix(c(TRUE, rep(FALSE, 8)), 3, 3)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 1)) == 0) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = -1)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(maxout = 1) + blocks(attr = ~bd_attr, levels2 = matrix(c(TRUE, rep(FALSE, 8)), 3, 3)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 1)) == 0) expect_true(all(summary(nws ~ nodefactor(~bd_attr, levels = TRUE)) > 0)) expect_true(summary(nws ~ concurrent) == 0) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(attr = ~bd_attr, levels2 = matrix(c(FALSE, TRUE, FALSE, TRUE, rep(FALSE, 5)), 3, 3)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 2)) == 0) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = -2)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(maxout = 1) + blocks(attr = ~bd_attr, levels2 = matrix(c(FALSE, TRUE, FALSE, TRUE, rep(FALSE, 5)), 3, 3)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 2)) == 0) expect_true(all(summary(nws ~ nodefactor(~bd_attr, levels = TRUE)) > 0)) expect_true(summary(nws ~ concurrent) == 0) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~strat(attr = "strat_attr", pmat = matrix(2 + runif(7*7), 7, 7)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~strat(attr = "strat_attr", pmat = matrix(2 + runif(7*7), 7, 7)) + blocks(attr = ~bd_attr, levels2 = matrix(c(TRUE, rep(FALSE, 8)), 3, 3)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 1)) == 0) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = -1)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(maxout = 1) + strat(attr = "strat_attr", pmat = matrix(2 + runif(7*7), 7, 7)) + blocks(attr = ~bd_attr, levels2 = matrix(c(TRUE, rep(FALSE, 8)), 3, 3)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 1)) == 0) expect_true(all(summary(nws ~ nodefactor(~bd_attr, levels = TRUE)) > 0)) expect_true(summary(nws ~ concurrent) == 0) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~strat(attr = "strat_attr", pmat = matrix(2 + runif(7*7), 7, 7)) + blocks(attr = ~bd_attr, levels2 = matrix(c(FALSE, TRUE, FALSE, TRUE, rep(FALSE, 5)), 3, 3)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 2)) == 0) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = -2)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(maxout = 1) + strat(attr = "strat_attr", pmat = matrix(2 + runif(7*7), 7, 7)) + blocks(attr = ~bd_attr, levels2 = matrix(c(FALSE, TRUE, FALSE, TRUE, rep(FALSE, 5)), 3, 3)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 2)) == 0) expect_true(all(summary(nws ~ nodefactor(~bd_attr, levels = TRUE)) > 0)) expect_true(summary(nws ~ concurrent) == 0) }) test_that("BDStratTNT handles bipartite arguments correctly", { nw <- network.initialize(100, directed = FALSE, bipartite = 30) nw %v% "bd_attr" <- c(rep(1:3, length.out = 30), rep(6:10, length.out = 70)) nw %v% "strat_attr" <- rep(1:7, length.out = 100) nws <- simulate(nw ~ edges, coef = c(0), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(attr = ~bd_attr, levels2 = matrix(c(TRUE, rep(FALSE, 14)), nrow = 3,ncol = 5)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 1)) == 0) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = -1)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(maxout = 1) + blocks(attr = ~bd_attr, levels2 = matrix(c(TRUE, rep(FALSE, 14)), nrow = 3, ncol = 5)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 1)) == 0) expect_true(all(summary(nws ~ nodefactor(~bd_attr, levels = TRUE)) > 0)) expect_true(summary(nws ~ concurrent) == 0) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(attr = ~bd_attr, levels2 = matrix(c(FALSE, TRUE, FALSE, FALSE, rep(FALSE, 11)), nrow = 3, ncol = 5)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2=2)) == 0) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2=-2)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(maxout = 1) + blocks(attr = ~bd_attr, levels2 = matrix(c(FALSE, TRUE, FALSE, FALSE, rep(FALSE, 11)), nrow = 3, ncol = 5)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 2)) == 0) expect_true(all(summary(nws ~ nodefactor(~bd_attr, levels = TRUE)) > 0)) expect_true(summary(nws ~ concurrent) == 0) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~strat(attr = "strat_attr", pmat = matrix(2 + runif(7*7), 7, 7)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~strat(attr = "strat_attr", pmat = matrix(2 + runif(7*7), 7, 7)) + blocks(attr = ~bd_attr, levels2 = matrix(c(TRUE, rep(FALSE, 14)), nrow = 3, ncol = 5)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 1)) == 0) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = -1)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~strat(attr = "strat_attr", pmat = matrix(2 + runif(7*7), 7, 7)) + bd(maxout = 1) + blocks(attr = ~bd_attr, levels2 = matrix(c(TRUE, rep(FALSE, 14)), nrow = 3, ncol = 5)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 1)) == 0) expect_true(all(summary(nws ~ nodefactor(~bd_attr, levels = TRUE)) > 0)) expect_true(summary(nws ~ concurrent) == 0) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~strat(attr = "strat_attr", pmat = matrix(2 + runif(7*7), 7, 7)) + blocks(attr = ~bd_attr, levels2 = matrix(c(FALSE, TRUE, FALSE, FALSE, rep(FALSE, 11)), nrow = 3, ncol = 5)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 2)) == 0) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = -2)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~strat(attr = "strat_attr", pmat = matrix(2 + runif(7*7), 7, 7)) + bd(maxout = 1) + blocks(attr = ~bd_attr, levels2 = matrix(c(FALSE, TRUE, FALSE, FALSE, rep(FALSE, 11)), nrow = 3, ncol = 5)), control = list(MCMC.prop.weights = "BDStratTNT")) expect_true(summary(nws ~ nodemix(~bd_attr, levels2 = 2)) == 0) expect_true(all(summary(nws ~ nodefactor(~bd_attr, levels = TRUE)) > 0)) expect_true(summary(nws ~ concurrent) == 0) }) test_that("BDStratTNT handles atypical levels specifications correctly", { nw <- network.initialize(100, directed = FALSE) nw %v% "bd_attr" <- rep(1:3, length.out = 100) nw %v% "strat_attr" <- rep(1:5, length.out = 100) pmat <- matrix(2 + runif(25), 5, 5) ## should be unconstrained nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, levels = TRUE) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) ## should also be unconstrained nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, levels = FALSE) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) ## any pairing with a 3 should be allowed, with all other pairings forbidden nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, levels = I(c(1, 2, 4, 6)), levels2 = TRUE) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = c(4, 5, 6))) > 0)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = -c(4, 5, 6))) == 0)) ## only 2-2 pairings should be allowed nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, levels = I(c(1, 2, 3, 4, 6)), levels2 = -3) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = c(3))) > 0)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = -c(3))) == 0)) ## similar bipartite tests nw <- network.initialize(100, directed = FALSE, bipartite = 30) nw %v% "bd_attr" <- c(rep(1:3, length.out = 30), rep(10:16, length.out = 70)) nw %v% "strat_attr" <- c(rep(1:5, length.out = 30), rep(1:4, length.out = 70)) pmat <- matrix(2 + runif(20), nrow = 5, ncol = 4) ## should be unconstrained nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, b1levels = TRUE, b2levels = TRUE) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) ## should also be unconstrained nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, b1levels = FALSE, b2levels = FALSE) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, b1levels = FALSE) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, b2levels = FALSE) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, b1levels = FALSE, b2levels = FALSE, levels2 = TRUE) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, b1levels = FALSE, levels2 = TRUE) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, b2levels = FALSE, levels2 = TRUE) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = TRUE)) > 0)) ## any pairing with a 3 should be allowed, with all other pairings forbidden nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, b1levels = I(c(1, 2, 4, 6)), levels2 = TRUE) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = 3*(1:7))) > 0)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = -3*(1:7))) == 0)) ## only 1-14 pairings should be allowed nws <- simulate(nw ~ edges, coef = c(0), constraints = ~blocks(~bd_attr, b1levels = I(c(1, 2, 3, 4, 6)), levels2 = -21) + strat(attr = ~strat_attr, pmat = pmat)) expect_true(all(summary(nws ~ nodemix(~bd_attr, b1levels = I(1), b2levels = I(14), levels2 = TRUE)) > 0)) expect_true(all(summary(nws ~ nodemix(~bd_attr, levels2 = -c(13))) == 0)) }) test_that("BDStratTNT works with directed networks", { nw <- network.initialize(1000, directed = TRUE) nw %v% "race" <- c(rep("A", 20), rep("B", 20), rep("W", 960)) pmat <- matrix(c(100, 350, 0, 10, 100, 0, 100, 0, 840), 3, 3, byrow = TRUE) target.stats <- c(100, 10, 100, 350, 100, 0, 0, 0, 840) nws <- san(nw ~ nodemix("race", levels2 = TRUE), target.stats = target.stats, constraints = ~bd(maxout = 40, maxin = 40) + strat(pmat = pmat, attr = "race"), control = control.san(SAN.maxit = 1, SAN.nsteps = 1e4)) sr <- summary(nws ~ nodemix("race", levels2 = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) # redo with different targets, starting from previous network pmat2 <- matrix(c(50, 50, 350, 50, 50, 100, 50, 400, 400), 3, 3, byrow = TRUE) pmat3 <- (pmat + pmat2)/2 target.stats <- c(pmat2) nws2 <- san(nws ~ nodemix("race", levels2 = TRUE), target.stats = target.stats, constraints = ~bd(maxout = 40, maxin = 40) + strat(pmat = pmat3, attr = "race"), control = control.san(SAN.maxit = 1, SAN.nsteps = 2e4)) sr <- summary(nws2 ~ nodemix("race", levels2 = TRUE)) expect_true(all(abs(sr - target.stats) <= 0.05*target.stats)) }) test_that("BDStratTNT simulates directed reasonably", { net_size <- 1000L nw <- network.initialize(net_size, directed = TRUE) vattr <- sample(c("A", "B", "C"), net_size, TRUE) nw %v% "vattr" <- vattr nw %v% "sex" <- sample(c("X", "Y", "Z"), net_size, TRUE) pmat <- 1 - matrix(c(1, 0, 0, 1, 1, 0, 0, 1, 0), 3, 3) nw_sim <- nw for(i in c(1, 3)) { nw_sim <- simulate(nw_sim ~ edges, coef = c(0), constraints = ~bd(maxout = i, maxin = i + 1) + blocks(attr = "sex", levels2 = matrix(c(TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE), 3, 3)) + strat(attr = "vattr", pmat = pmat), output = "network") summ_stats <- summary(nw_sim ~ nodemix("vattr", levels2 = TRUE) + nodemix("sex", levels2 = TRUE) + odegrange(i + 1) + idegrange(i + 2)) expect_true(summ_stats["mix.vattr.A.A"] == 0) expect_true(summ_stats["mix.vattr.B.B"] == 0) expect_true(summ_stats["mix.vattr.A.B"] == 0) expect_true(summ_stats["mix.vattr.B.C"] == 0) expect_true(summ_stats["mix.vattr.A.C"] > 0) expect_true(summ_stats["mix.vattr.B.A"] > 0) expect_true(summ_stats["mix.vattr.C.A"] > 0) expect_true(summ_stats["mix.vattr.C.B"] > 0) expect_true(summ_stats["mix.vattr.C.C"] > 0) expect_true(summ_stats["mix.sex.X.X"] == 0) expect_true(summ_stats["mix.sex.X.Y"] > 0) expect_true(summ_stats["mix.sex.X.Z"] > 0) expect_true(summ_stats["mix.sex.Y.X"] > 0) expect_true(summ_stats["mix.sex.Y.Y"] > 0) expect_true(summ_stats["mix.sex.Y.Z"] == 0) expect_true(summ_stats["mix.sex.Z.X"] == 0) expect_true(summ_stats["mix.sex.Z.Y"] == 0) expect_true(summ_stats["mix.sex.Z.Z"] > 0) expect_true(summ_stats[paste0("odeg", i + 1, "+")] == 0) expect_true(summ_stats[paste0("ideg", i + 2, "+")] == 0) } }) test_that("BDStratTNT handles undirected heterogeneous degree bound saturation correctly in simulation context", { net_size <- 20 deg_bound <- 2 nw <- network.initialize(net_size, directed = FALSE) nw %v% "strat_attr" <- rep(letters[1:10], length.out = net_size) nw %v% "blocks_attr" <- rep(1:3, length.out = net_size) pmat <- matrix(runif(10*10), nrow = 10, ncol = 10) pmat <- pmat + t(pmat) levels2 <- matrix(c(FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE), nrow = 3, byrow = TRUE) maxout <- matrix(round(deg_bound*runif(net_size*7)), nrow = net_size) bd_attr <- matrix(FALSE, nrow = net_size, ncol = 7) bd_attr[cbind(seq_len(net_size), 1 + (seq_len(net_size) %% 7))] <- TRUE bd_attr_flat <- rep(c(2:7,1), length.out = net_size) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(attr = bd_attr, maxout = maxout) + blocks(attr = ~blocks_attr, levels2 = levels2) + strat(attr = ~strat_attr, pmat = pmat), control = list(MCMC.burnin = 1e4)) ## check constraints expect_true(all(summary(nws ~ nodemix(~blocks_attr, levels2 = levels2)) == 0)) el <- as.edgelist(nws) degs <- table(from = factor(c(el), levels = seq_len(net_size)), to = factor(bd_attr_flat[c(el[, c(2, 1)])], levels = seq_len(7))) expect_true(all(degs <= maxout)) ## restart to test initialization nws2 <- simulate(nws ~ edges, coef = c(0), constraints = ~bd(attr = bd_attr, maxout = maxout) + blocks(attr = ~blocks_attr, levels2 = levels2) + strat(attr = ~strat_attr, pmat = pmat), control = list(MCMC.burnin = 1e4)) ## check constraints expect_true(all(summary(nws2 ~ nodemix(~blocks_attr, levels2 = levels2)) == 0)) el <- as.edgelist(nws2) degs <- table(from = factor(c(el), levels = seq_len(net_size)), to = factor(bd_attr_flat[c(el[, c(2, 1)])], levels = seq_len(7))) expect_true(all(degs <= maxout)) }) test_that("BDStratTNT handles directed heterogeneous degree bound saturation correctly in simulation context", { net_size <- 20 deg_bound <- 2 nw <- network.initialize(net_size, directed = TRUE) nw %v% "strat_attr" <- rep(letters[1:10], length.out = net_size) nw %v% "blocks_attr" <- rep(1:3, length.out = net_size) pmat <- matrix(runif(10*10), nrow = 10, ncol = 10) levels2 <- matrix(c(FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE), nrow = 3, byrow = TRUE) maxout <- matrix(round(deg_bound*runif(net_size*7)), nrow = net_size) maxin <- matrix(round(deg_bound*runif(net_size*7)), nrow = net_size) bd_attr <- matrix(FALSE, nrow = net_size, ncol = 7) bd_attr[cbind(seq_len(net_size), 1 + (seq_len(net_size) %% 7))] <- TRUE bd_attr_flat <- rep(c(2:7,1), length.out = net_size) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(attr = bd_attr, maxout = maxout, maxin = maxin) + blocks(attr = ~blocks_attr, levels2 = levels2) + strat(attr = ~strat_attr, pmat = pmat), control = list(MCMC.burnin = 1e4)) ## check constraints expect_true(all(summary(nws ~ nodemix(~blocks_attr, levels2 = levels2)) == 0)) el <- as.edgelist(nws) out_degs <- table(from = factor(c(el[, 1]), levels = seq_len(net_size)), to = factor(bd_attr_flat[c(el[, 2])], levels = seq_len(7))) expect_true(all(out_degs <= maxout)) in_degs <- table(from = factor(c(el[, 2]), levels = seq_len(net_size)), to = factor(bd_attr_flat[c(el[, 1])], levels = seq_len(7))) expect_true(all(in_degs <= maxin)) ## restart to test initialization nws2 <- simulate(nws ~ edges, coef = c(0), constraints = ~bd(attr = bd_attr, maxout = maxout, maxin = maxin) + blocks(attr = ~blocks_attr, levels2 = levels2) + strat(attr = ~strat_attr, pmat = pmat), control = list(MCMC.burnin = 1e4)) ## check constraints expect_true(all(summary(nws2 ~ nodemix(~blocks_attr, levels2 = levels2)) == 0)) el <- as.edgelist(nws2) out_degs <- table(from = factor(c(el[, 1]), levels = seq_len(net_size)), to = factor(bd_attr_flat[c(el[, 2])], levels = seq_len(7))) expect_true(all(out_degs <= maxout)) in_degs <- table(from = factor(c(el[, 2]), levels = seq_len(net_size)), to = factor(bd_attr_flat[c(el[, 1])], levels = seq_len(7))) expect_true(all(in_degs <= maxin)) }) test_that("BDStratTNT handles bipartite heterogeneous degree bound saturation correctly in simulation context", { net_size <- 20 bip_size <- 5 deg_bound <- 2 nw <- network.initialize(net_size, directed = FALSE, bipartite = bip_size) nw %v% "strat_attr" <- rep(letters[1:10], length.out = net_size) nw %v% "blocks_attr" <- rep(1:3, length.out = net_size) pmat <- matrix(runif(5*10), nrow = 5, ncol = 10) levels2 <- matrix(c(FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE), nrow = 3, byrow = TRUE) maxout <- matrix(round(deg_bound*runif(net_size*7)), nrow = net_size) bd_attr <- matrix(FALSE, nrow = net_size, ncol = 7) bd_attr[cbind(seq_len(net_size), 1 + (seq_len(net_size) %% 7))] <- TRUE bd_attr_flat <- rep(c(2:7,1), length.out = net_size) nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(attr = bd_attr, maxout = maxout) + blocks(attr = ~blocks_attr, levels2 = levels2) + strat(attr = ~strat_attr, pmat = pmat), control = list(MCMC.burnin = 1e4)) ## check constraints expect_true(all(summary(nws ~ nodemix(~blocks_attr, levels2 = levels2)) == 0)) el <- as.edgelist(nws) degs <- table(from = factor(c(el), levels = seq_len(net_size)), to = factor(bd_attr_flat[c(el[, c(2, 1)])], levels = seq_len(7))) expect_true(all(degs <= maxout)) ## restart to test initialization nws2 <- simulate(nws ~ edges, coef = c(0), constraints = ~bd(attr = bd_attr, maxout = maxout) + blocks(attr = ~blocks_attr, levels2 = levels2) + strat(attr = ~strat_attr, pmat = pmat), control = list(MCMC.burnin = 1e4)) ## check constraints expect_true(all(summary(nws2 ~ nodemix(~blocks_attr, levels2 = levels2)) == 0)) el <- as.edgelist(nws2) degs <- table(from = factor(c(el), levels = seq_len(net_size)), to = factor(bd_attr_flat[c(el[, c(2, 1)])], levels = seq_len(7))) expect_true(all(degs <= maxout)) }) test_that("BDStratTNT handles undirected homogeneous degree bound saturation correctly in simulation context", { net_size <- 20 deg_bound <- 2 nw <- network.initialize(net_size, directed = FALSE) nw %v% "strat_attr" <- rep(letters[1:10], length.out = net_size) nw %v% "blocks_attr" <- rep(1:3, length.out = net_size) pmat <- matrix(runif(10*10), nrow = 10, ncol = 10) pmat <- pmat + t(pmat) levels2 <- matrix(c(FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE), nrow = 3, byrow = TRUE) maxout <- deg_bound nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(maxout = maxout) + blocks(attr = ~blocks_attr, levels2 = levels2) + strat(attr = ~strat_attr, pmat = pmat), control = list(MCMC.burnin = 1e4)) ## check constraints expect_true(all(summary(nws ~ nodemix(~blocks_attr, levels2 = levels2)) == 0)) el <- as.edgelist(nws) degs <- tabulate(c(el), nbins = net_size) expect_true(all(degs <= maxout)) ## restart to test initialization nws2 <- simulate(nws ~ edges, coef = c(0), constraints = ~bd(maxout = maxout) + blocks(attr = ~blocks_attr, levels2 = levels2) + strat(attr = ~strat_attr, pmat = pmat), control = list(MCMC.burnin = 1e4)) ## check constraints expect_true(all(summary(nws2 ~ nodemix(~blocks_attr, levels2 = levels2)) == 0)) el <- as.edgelist(nws2) degs <- tabulate(c(el), nbins = net_size) expect_true(all(degs <= maxout)) }) test_that("BDStratTNT handles directed homogeneous degree bound saturation correctly in simulation context", { net_size <- 20 deg_bound <- 2 nw <- network.initialize(net_size, directed = TRUE) nw %v% "strat_attr" <- rep(letters[1:10], length.out = net_size) nw %v% "blocks_attr" <- rep(1:3, length.out = net_size) pmat <- matrix(runif(10*10), nrow = 10, ncol = 10) levels2 <- matrix(c(FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE), nrow = 3, byrow = TRUE) maxout <- deg_bound maxin <- deg_bound nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(maxout = maxout, maxin = maxin) + blocks(attr = ~blocks_attr, levels2 = levels2) + strat(attr = ~strat_attr, pmat = pmat), control = list(MCMC.burnin = 1e4)) ## check constraints expect_true(all(summary(nws ~ nodemix(~blocks_attr, levels2 = levels2)) == 0)) el <- as.edgelist(nws) out_degs <- tabulate(c(el[, 1]), nbins = net_size) expect_true(all(out_degs <= maxout)) in_degs <- tabulate(c(el[, 2]), nbins = net_size) expect_true(all(in_degs <= maxin)) ## restart to test initialization nws2 <- simulate(nws ~ edges, coef = c(0), constraints = ~bd(maxout = maxout, maxin = maxin) + blocks(attr = ~blocks_attr, levels2 = levels2) + strat(attr = ~strat_attr, pmat = pmat), control = list(MCMC.burnin = 1e4)) ## check constraints expect_true(all(summary(nws2 ~ nodemix(~blocks_attr, levels2 = levels2)) == 0)) el <- as.edgelist(nws2) out_degs <- tabulate(c(el[, 1]), nbins = net_size) expect_true(all(out_degs <= maxout)) in_degs <- tabulate(c(el[, 2]), nbins = net_size) expect_true(all(in_degs <= maxin)) }) test_that("BDStratTNT handles bipartite homogeneous degree bound saturation correctly in simulation context", { net_size <- 20 bip_size <- 5 deg_bound <- 2 nw <- network.initialize(net_size, directed = FALSE, bipartite = bip_size) nw %v% "strat_attr" <- rep(letters[1:10], length.out = net_size) nw %v% "blocks_attr" <- rep(1:3, length.out = net_size) pmat <- matrix(runif(5*10), nrow = 5, ncol = 10) levels2 <- matrix(c(FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE), nrow = 3, byrow = TRUE) maxout <- deg_bound nws <- simulate(nw ~ edges, coef = c(0), constraints = ~bd(maxout = maxout) + blocks(attr = ~blocks_attr, levels2 = levels2) + strat(attr = ~strat_attr, pmat = pmat), control = list(MCMC.burnin = 1e4)) ## check constraints expect_true(all(summary(nws ~ nodemix(~blocks_attr, levels2 = levels2)) == 0)) el <- as.edgelist(nws) degs <- tabulate(c(el), nbins = net_size) expect_true(all(degs <= maxout)) ## restart to test initialization nws2 <- simulate(nws ~ edges, coef = c(0), constraints = ~bd(maxout = maxout) + blocks(attr = ~blocks_attr, levels2 = levels2) + strat(attr = ~strat_attr, pmat = pmat), control = list(MCMC.burnin = 1e4)) ## check constraints expect_true(all(summary(nws2 ~ nodemix(~blocks_attr, levels2 = levels2)) == 0)) el <- as.edgelist(nws2) degs <- tabulate(c(el), nbins = net_size) expect_true(all(degs <= maxout)) }) test_that("all free dyads vary with a blocks constraint", { net_size <- 17 bip_size <- 9 nsim <- 200 blocks_levels_2 <- matrix(FALSE, nrow = 3, ncol = 3) blocks_levels_2[1,1] <- TRUE blocks_levels_2[2,3] <- TRUE net_attrs_list <- list(list(n = net_size, directed = FALSE, bipartite = FALSE), list(n = net_size, directed = TRUE, bipartite = FALSE), list(n = net_size, directed = FALSE, bipartite = bip_size)) for (i in seq_along(net_attrs_list)) { ## construct network nw <- do.call(network.initialize, net_attrs_list[[i]]) ## construct logical matrix of dyads in the network dyad_mat <- !diag(net_size) if (is.bipartite(nw)) { dyad_mat[-seq_len(bip_size),] <- FALSE dyad_mat[,seq_len(bip_size)] <- FALSE } else if (!is.directed(nw)) { dyad_mat[lower.tri(dyad_mat)] <- FALSE } ## check dyad count expect_equal(sum(dyad_mat), network.dyadcount(nw)) ## construct logical vector of free dyads in the network free_dyads <- !diag(net_size) free_dyads[seq_len(net_size) %% 3 == 1, seq_len(net_size) %% 3 == 1] <- FALSE free_dyads[seq_len(net_size) %% 3 == 2, seq_len(net_size) %% 3 == 0] <- FALSE if (!is.directed(nw) && !is.bipartite(nw)) { free_dyads <- free_dyads & t(free_dyads) } free_dyads <- free_dyads[which(dyad_mat)] ## restrict size of dyad_mat in bipartite case if (is.bipartite(nw)) { dyad_mat <- dyad_mat[seq_len(bip_size), -seq_len(bip_size)] } ## perform simulation stats <- simulate(nw ~ edges, coef = c(0), monitor = ~nodemix(~seq_len(net_size), levels2 = dyad_mat), nsim = nsim, constraints = "BDStratTNT" ~ blocks(~rep(1:3, length.out = net_size), levels2 = blocks_levels_2), output = "stats", control = list(MCMC.burnin = 1e3, MCMC.interval = 1e3)) ## drop edges statistic stats <- stats[,-1] ## check number of stats expect_equal(NCOL(stats), network.dyadcount(nw)) ## confirm that free dyads take two states and fixed dyads take one state for (i in seq_len(NCOL(stats))) { expect_true(length(unique(stats[, i])) == 1 + free_dyads[i]) } } })