# File tests/testthat/test-predict.ergm.R in package ergm, part of the # Statnet suite of packages for network analysis, https://statnet.org . # # This software is distributed under the GPL-3 license. It is free, # open source, and has the attribution requirements (GPL Section 7) at # https://statnet.org/attribution . # # Copyright 2003-2024 Statnet Commons ################################################################################ library(ergm) test_that("predict.formula(type=) give correct results", { net <- network.initialize(3, directed=TRUE) net[1,2] <- 1 expect_silent( p.prob <- predict(net ~ edges, theta = log(1/5), type="response") # predict.formula() ) expect_silent( p.link <- predict(net ~ edges, theta = log(1/5), type="link") # predict.formula() ) expect_true( all.equal(p.link$p, log(p.prob$p / (1 - p.prob$p))) ) }) test_that("predict.formula(conditional=FALSE)", { net <- network.initialize(3, directed=TRUE) net[1,2] <- 1 expect_silent( p.prob <- predict( net ~ edges, theta = log(1/5), nsim = 5, type="response", conditional=FALSE ) ) }) test_that("works for edges model on small digraph", { net <- network.initialize(3, directed=TRUE) net[1,2] <- 1 expect_silent( r.f <- predict(net ~ edges, log(1/5)) # predict.formula() ) fit <- ergm(net ~ edges) expect_silent( r.e <- predict(fit) # predict.ergm() ) expect_true( all.equal(unique(r.f$p), 1/6) ) expect_identical( names(r.f), c("tail", "head", "p") ) expect_identical( names(r.e), c("tail", "head", "p") ) expect_true( all.equal(unique(r.e$p), 1/6) ) }) test_that("predict.formula(output='matrix') works correctly", { net <- network.initialize(3, directed=TRUE) net[1,2] <- 1 expect_silent( p.prob <- predict(net ~ edges, theta = log(1/5), type="response", output="matrix") ) }) test_that("works for edges model on small graph", { net <- network.initialize(3, directed=FALSE) net[1,2] <- 1 expect_silent( r.f <- predict(net ~ edges, log(1/2)) # predict.formula() ) fit <- ergm(net ~ edges) expect_silent( r.e <- predict(fit) # predict.ergm() ) expect_identical( names(r.f), c("tail", "head", "p") ) expect_identical( names(r.e), c("tail", "head", "p") ) expect_true( all.equal(unique(r.f$p), 1/3) ) expect_true( all.equal(unique(r.f$p), 1/3) ) }) test_that("predict.formula(net ~ edges + offset(edges))", { net <- network.initialize(4, directed=FALSE) # edges + offset(edges) expect_silent( # Odds = 1/4 * 4 = 1 # P = 0.5 p <- predict(net ~ edges + offset(edges), c(log(1/4), log(4))) ) expect_equal(p$p, rep(0.5, 6)) net[1,2:4] <- 1 expect_equal( predict(ergm(net ~ edges + offset(edges), offset.coef=log(4)))$p, rep(0.5, 6) ) }) test_that("predict.formula(net ~ edges + offset(nodematch))", { net <- network.initialize(4, directed=FALSE) net %v% "a" <- a <- c(1,1,2,2) expect_silent( p <- predict( net ~ edges + offset(nodematch("a", diff=FALSE)), c(log(1/4), log(4)) ) ) match_on_a <- a[p$tail] == a[p$head] expect_equal( p$p, ifelse(match_on_a, 0.5, 0.2) ) }) test_that("predict.formula(net ~ edges + degree(1)", { net <- network.initialize(3, directed=FALSE) net[1,2] <- 1 expect_silent( p <- predict( # logodds(1--2) = log(1/4) + log(4)*2 # odds(1--2) = 16/4 = 4 # P(1--2) = 4/5 # logodds(1--3 | 2--3) = log(1/4) + log(4) * 0 # odds(1--3 | 2--3) = 1/4 # P(1--3 | 2--3) = 1/5 net ~ edges + degree(1), c(log(1/4), log(4)) ) ) expect_equal( p$p, with(p, ifelse(tail == 1 & head == 2, 4/5, 1/5)) ) }) test_that("it works for offsets and non-finite offset coefs (and MPLE existence check works)", { data("faux.mesa.high") expect_warning(fit <- ergm( faux.mesa.high ~ edges + nodefactor("Grade") + nodematch("Grade", diff=T) + offset(nodematch("Sex", diff = TRUE, levels = c(1, 2))), offset.coef = rep(-Inf, 2) ), "^The MPLE does not exist!$") expect_silent( p <- predict(fit) ) expect_true( all(is.finite(p$p)) ) }) test_that("matrix output of predict() is properly named", { data(g4) set.seed(666) fit <- ergm(g4 ~ edges) p.cond <- predict(fit, conditional = TRUE, output = "matrix") expect_identical(rownames(p.cond), g4 %v% "vertex.names") expect_identical(colnames(p.cond), g4 %v% "vertex.names") p.uncond <- predict(fit, conditional = FALSE, output = "matrix", nsim = 2) expect_identical(rownames(p.uncond), g4 %v% "vertex.names") expect_identical(colnames(p.uncond), g4 %v% "vertex.names") })