# File tests/testthat/test-miss.CD.R in package ergm, part of the # Statnet suite of packages for network analysis, https://statnet.org . # # This software is distributed under the GPL-3 license. It is free, # open source, and has the attribution requirements (GPL Section 7) at # https://statnet.org/attribution . # # Copyright 2003-2024 Statnet Commons ################################################################################ attach(MLE.tools) theta0err<--1 # Perturbation in the initial values maxit<-60 # Maximum number of iterations tolerance<-0.01 # Result must be within 1% of truth. tolerance.CD<-0.15 # Result must be within 15% of truth. n<-20 # Number of nodes b<-7 # Bipartite split d<-.1 # Density m<-.1 # Missingness rate cat("n=",n,", density=",d,", missing=",m,"\n",sep="") run.miss.test<-function(y){ truth<-edges.theta(y) ### Needs more work. ## cdfit<-ergm(y~edges, estimate="CD") ## cdOK<-all.equal(truth, coef(cdfit), ignore_attr=TRUE, tolerance=tolerance.CD) ## cat("CD estimate =", coef(cdfit), if(isTRUE(cdOK)) "OK" else cdOK,"\n") cd2fit<-ergm(y~edges, control=control.ergm(CD.nsteps=50, MCMC.samplesize=100), estimate="CD") expect_equal(truth, coef(cd2fit), ignore_attr=TRUE, tolerance=tolerance.CD) } # Directed test_that("directed network", { set.seed(123) y<-mk.missnet(n, d, m, TRUE, FALSE) run.miss.test(y) }) # Undirected test_that("undirected network", { set.seed(456) y<-mk.missnet(n, d, m, FALSE, FALSE) run.miss.test(y) }) # Bipartite Undirected test_that("bipartite undirected network", { set.seed(789) y<-mk.missnet(n, d, m, FALSE, b) run.miss.test(y) }) # Add the curved+missing test here for now test_that("curved+missing", { set.seed(321) n <- 50 y <- network.initialize(n, directed=FALSE) # Create an empty network y <- simulate(y~edges, coef=logit(0.12), control=control.simulate(MCMC.burnin=2*n^2)) y.miss <- simulate(y~edges, coef=logit(0.01)) y[as.edgelist(y.miss)] <- NA cat("Network statistics:\n") print(summary(y~edges+gwesp())) truth<-edges.theta(y) cat("Correct estimate =",truth,"\n") set.seed(654) cdfit<-ergm(y~edges+gwesp(), estimate="CD", control=control.ergm(CD.nsteps=50, MCMC.samplesize=100)) summary(cdfit) expect_lt(abs(coef(cdfit)[1]-truth)/sqrt(cdfit$covar[1]), 2) }) detach(MLE.tools)