# File tests/testthat/test-term-undirected.R in package ergm, part of the # Statnet suite of packages for network analysis, https://statnet.org . # # This software is distributed under the GPL-3 license. It is free, # open source, and has the attribution requirements (GPL Section 7) at # https://statnet.org/attribution . # # Copyright 2003-2023 Statnet Commons ################################################################################ # an undirected nw data(faux.mesa.high) fmh <- faux.mesa.high set.seed(7) set.edge.attribute(fmh, "GradeMet", rbinom(203, 6, .5)) # a small undirected nw w/ lots o' triangles set.seed(20) t<-trunc(runif(160, 1, 20)) set.seed(21) h<-trunc(runif(160, 1, 20)) el <- cbind(t,h) bad <- which(el[,2]==el[,1]) el[bad,2] = el[bad,2]+1 unnw <- network(el, directed=FALSE) unnw %v% "Pet" <- c("dog", "cat") test_that("altkstar, undirected, ", { s.0 <- summary(fmh~altkstar) e.0 <- ergm(fmh~altkstar(1, fixed=TRUE), estimate="MPLE") e.l <- ergm(fmh~altkstar(.5, fixed=TRUE), estimate="MPLE") s.f <- summary(fmh~altkstar(1, fixed=TRUE)) e.lf <- ergm(fmh~altkstar(.9, fixed=TRUE), estimate="MPLE") expect_summary(s.0[1:10], e.0, c(51,30,28,18,10,2,4,1,2,1), -3.234) expect_equal(coef(e.l), -4.166, tolerance=0.001, ignore_attr=TRUE) expect_equal(s.f, 258, ignore_attr=TRUE) expect_equal(coef(e.lf), -3.494, tolerance=0.001, ignore_attr=TRUE) }) test_that("concurrent, undirected", { s.0 <- summary(fmh~concurrent) e.0 <- ergm(fmh~concurrent, estimate="MPLE") s.b <- summary(fmh~concurrent(by=function(x) x %v% "Grade")) e.b <- ergm(fmh~concurrent(by="Sex"), estimate="MPLE") expect_summary(s.0, e.0, 97, -4.871) expect_summary(s.b, e.b, c(35,15,18,8,13,8), -c(5.17301, 4.67697)) }) test_that("concurrentties, undirected", { s.0 <- summary(fmh~concurrentties) e.0 <- ergm(fmh~concurrentties, estimate="MPLE") s.b <- summary(fmh~concurrentties(by="Grade")) e.b <- ergm(fmh~concurrentties(by=~Sex), estimate="MPLE") expect_summary(s.0, e.0, 258, -3.234) expect_summary(s.b, e.b, c(103,51,36,19,31,18), -c(3.078,3.429)) }) test_that("cyclicalties, directed", { s.0 <- summary(fmh~cyclicalties) e.0 <- ergm(fmh~cyclicalties, estimate="MPLE") s.a <- summary(fmh~cyclicalties("Race")) e.a <- ergm(fmh~cyclicalties("Race"), estimate="MPLE") expect_summary(s.0, e.0, 120, -0.4868) expect_summary(s.a, e.a, 40, -0.4430) }) test_that("degree, undirected", { s.d <- summary(fmh~degree(2:3)) e.d <- ergm(fmh~degree(0), estimate="MPLE") s.db <- summary(fmh~degree(1:3, function(x) x %v% "Grade")) e.db <- ergm(fmh~degree(4, "Sex"), estimate="MPLE") s.dbh <- summary(fmh~degree(4:5, by="Sex", homophily=TRUE)) e.dbh <- ergm(fmh~degree(2, by=~Grade, homophily=TRUE), estimate="MPLE") expect_summary(s.d, e.d, c(30,28), 5.11) expect_summary(s.db, e.db, c(15,9,9,9,4,2,11,5,9,9,4,2,5,5,4,2,3,2), -c(.345, .6005)) expect_summary(s.dbh, e.dbh, c(10,3), -.5713) }) test_that("degrange, undirected", { s.0 <- summary(fmh~degrange(1:3)) e.0 <- ergm(fmh~degrange(1:3), estimate="MPLE") s.h <- summary(fmh~degrange(1:3, by="Sex", homophily=TRUE)) e.h <- ergm(fmh~degrange(1:3, by=~Sex, homophily=TRUE), estimate="MPLE") expect_summary(s.0, e.0, c(148, 97, 67), -c(4.349, 4.067, 3.178 )) expect_summary(s.h, e.h, c(122, 65, 36), -c(3.389, 3.032, 2.368 )) }) test_that("degcrossprod, undirected", { s.0 <- summary(unnw~degcrossprod) e.0 <- ergm(unnw~degcrossprod, estimate="MPLE") expect_summary(s.0, e.0, c(56.30102), c(0.099)) }) test_that("degcor, undirected", { s.0 <- summary(unnw~degcor) e.0 <- ergm(unnw~degcor, estimate="MPLE") expect_summary(s.0, e.0, -c(0.09789041 ), c(0.2282)) }) test_that("degree1.5, undirected", { s.0 <- summary(fmh~degree1.5) e.0 <- ergm(fmh~degree1.5, estimate="MPLE") expect_summary(s.0, e.0, 795.7458, -1.1398) }) test_that("gwdegree, undirected", { s.d <- summary(fmh~gwdegree()) expect_error(summary(fmh~gwdegree(cutoff=9)), ".*Term .gwdegree. has encountered a network for which degree of some node exceeded the cut-off setting of 9. This can usually be remedied by increasing the value of the term argument .cutoff. or the corresponding term option .gw.cutoff...*") e.d <- ergm(fmh~gwdegree(.4, fixed=TRUE), estimate="MPLE") s.df <- summary(fmh~gwdegree(.3, fixed=TRUE)) e.df <- ergm(fmh~gwdegree(.2, fixed=TRUE), estimate="MPLE") s.dfa <- summary(fmh~gwdegree(.1, fixed=TRUE, attr=function(x) x %v% "Grade")) e.dfa <- ergm(fmh~gwdegree(.1, fixed=TRUE, attr=~Grade), estimate="MPLE") expect_summary(head(s.d), e.d, setNames(c(51,30,28,18,10,2), paste0("gwdegree#",1:6)), c(gwdeg.fixed.0.4=-13.59067)) expect_summary(s.df, e.df, 178.4312, -18.2508) expect_summary(s.dfa, e.dfa, c(53.58148, 25.53534, 30.83418, 17.79934, 19.31326, 10.80933), -c(23.94060, 23.30646, 23.51430, 23.31140, 25.11103, 26.88088)) }) test_that("kstar, undirected", { s.k <- summary(fmh~kstar(1:3)) e.k <- ergm(fmh~kstar(c(2,4)), estimate="MPLE") s.ka <- summary(fmh~kstar(2, "Grade")) e.ka <- ergm(fmh~kstar(2, "Sex"), estimate="MPLE") expect_summary(s.k, e.k, c(406, 659, 1010), c(-1.45086, .06255)) expect_summary(s.ka, e.ka, 466, -1.535175) }) test_that("opentriad, undirected", { s.0 <- summary(fmh~opentriad) e.0 <- ergm(fmh~opentriad, estimate="MPLE") expect_summary(s.0, e.0, 473, 0) }) test_that("sociality, undirected", { s.0 <- summary(fmh~sociality) s.b <- summary(fmh~sociality(nodes=-(2:203))) expect_equal(head(s.0), c(4,0,0,1,0,0), ignore_attr=TRUE) expect_equal(s.b, c(13,3,1), ignore_attr=TRUE) }) test_that("transitiveties, directed", { s.0 <- summary(fmh~transitiveties) e.0 <- ergm(fmh~transitiveties, estimate="MPLE") s.a <- summary(fmh~transitiveties("Race")) e.a <- ergm(fmh~transitiveties("Race"), estimate="MPLE") expect_summary(s.0, e.0, 120, -0.4868) expect_summary(s.a, e.a, 40, -0.4430) }) test_that("tripercent, undirected", { s.0 <- summary(unnw~tripercent) e.0 <- ergm(unnw~tripercent, estimate="MPLE") s.a <- summary(unnw~tripercent("Pet")) e.a <- ergm(unnw~tripercent(~Pet), estimate="MPLE") expect_summary(s.0, e.0, 29.19463, 0.4492) expect_summary(s.a, e.a, 29.09091, 0.2501) })