# File tests/testthat/test-ergm-san.R in package ergm, part of the # Statnet suite of packages for network analysis, https://statnet.org . # # This software is distributed under the GPL-3 license. It is free, # open source, and has the attribution requirements (GPL Section 7) at # https://statnet.org/attribution . # # Copyright 2003-2023 Statnet Commons ################################################################################ n <- 50 test_that("SAN moves from a sparser network to a denser one with desired triadic attributes", { x <- network(n, density = 0.05/100*n, directed = FALSE) y <- san(x ~ edges + triangles, target.stats = c(n*6, n*3)) z <- summary(y ~ edges + triangles) expect_true(z["edges"] > n*5.8 && z["edges"] < n*6.2) expect_true(z["triangle"] > n*2.9 && z["triangle"] < n*3.1) }) test_that("SAN correctly adjusts inward and outward sums while maintaining edge count", { x <- network(n, numedges = n) x %v% 'prop' <- runif(n, 0, 2) y <- san(x ~ edges + nodeicov('prop') + nodeocov('prop'), target.stats = c(n, n*.75, n*1.25)) z <- summary(y ~ edges + nodeicov('prop') + nodeocov('prop')) expect_true(z["edges"] > n*.95 && z["edges"] < n*1.05) expect_true(z["nodeicov.prop"] > n*.7 && z["nodeicov.prop"] < n*.8) expect_true(z["nodeocov.prop"] > n*1.2 && z["nodeocov.prop"] < n*1.3) }) test_that("SAN matches target stats while respecting infinite offsets", { x <- network(n, directed=FALSE,density=0) x %v% "sex" <- sample(c("M","F"),n,rep=TRUE) y <- san(x ~ edges + offset(nodematch("sex")), target.stats=c(6*n), offset.coef=c(-Inf)) z <- summary(y ~ edges + offset(nodematch("sex"))) expect_true(z["edges"] > 5.9*n && z["edges"] < 6.1*n) expect_true(z["offset(nodematch.sex)"] == 0) }) test_that("SAN matches target stats while respecting infinite dyad-dependent offsets", { x <- network(n, directed=FALSE,density=0) y <- san(x ~ edges + offset(concurrent), target.stats=c(floor(n/2)), offset.coef=c(-Inf)) z <- summary(y ~ edges + offset(concurrent)) expect_true(z["edges"] >= 0.95*floor(n/2)) expect_true(z["offset(concurrent)"] == 0) }) test_that("weighted SAN matches target stats while respecting infinite offsets", { x <- network(n, directed=FALSE, numedges=0) x %v% "sex" <- rep(c("M","F"),length.out=n) y <- san(x ~ sum + offset(nodematch("sex")), reference=~Unif(0,n/5),target.stats=c(n^3/160),response="ea",offset.coef=c(-Inf)) z <- summary(y ~ sum + offset(nodematch("sex")), response="ea") expect_true(z["sum"] > .98*n^3/160 && z["sum"] < 1.02*n^3/160) expect_true(z["offset(nodematch.sum.sex)"] == 0) }) test_that("SAN errors when passed the wrong number of offsets", { x <- network(n, directed=FALSE,density=0) expect_error(san(x ~ edges + offset(concurrent), target.stats=c(6*n)), paste0("Length of ", sQuote("offset.coef"), " in SAN is 0, while the number of offset coefficients in the model is 1.")) expect_error(san(x ~ edges + offset(concurrent), target.stats=c(6*n), offset.coef=c(1,2)), paste0("Length of ", sQuote("offset.coef"), " in SAN is 2, while the number of offset coefficients in the model is 1.")) }) test_that("SAN works with curved terms", { x <- network(n, directed=FALSE,numedges=1) y <- san(x ~ edges + gwesp(0,fixed=T), target.stats=c(100,10)) z <- summary(y ~ edges + gwesp(0,fixed=T)) expect_true(z["edges"] >= 98 && z["edges"] <= 102) expect_true(z["gwesp.fixed.0"] >= 9 && z["gwesp.fixed.0"] <= 11) ## e <- ergm(x ~ edges + offset(gwesp(0,fixed=T)), offset.coef=c(-Inf), estimate="MPLE") ## y <- san(e, target.stats=c(250), offset.coef=c(-Inf)) ## z <- summary(y ~ edges + offset(gwesp(0,fixed=T))) ## expect_true(z["edges"] >= 245 && z["edges"] <= 255) ## expect_true(z["offset(gwesp.fixed.0)"] == 0) y <- san(x ~ edges + esp(1:2), target.stats=c(500,20,10)) z <- summary(y ~ edges + esp(1:2)) expect_true(z["edges"] >= 495 && z["edges"] <= 505) expect_true(z["esp1"] >= 19 && z["esp1"] <= 21) expect_true(z["esp2"] >= 9 && z["esp2"] <= 11) ## e <- ergm(x ~ edges + offset(degree(3)) + gwesp(0,fixed=T), offset.coef=c(-Inf), estimate="MPLE") ## y <- san(e, target.stats=c(30,9), offset.coef=c(-Inf)) ## z <- summary(y ~ edges + gwesp(0,fixed=T)) ## expect_true(z["edges"] >= 29 && z["edges"] <= 31) ## expect_true(z["gwesp.fixed.0"] >= 8 && z["gwesp.fixed.0"] <= 10) ## e <- ergm(x ~ edges + offset(degree(3)) + gwesp(cutoff=2), offset.coef=c(-Inf), control=control.ergm(MCMLE.maxit=1, loglik=control.logLik.ergm(bridge.nsteps=1))) ## y <- san(e, target.stats=c(30,9,0), offset.coef=c(-Inf)) ## z <- summary(y ~ edges + gwesp(cutoff=2)) ## expect_true(z["edges"] >= 29 && z["edges"] <= 31) ## expect_true(z["esp#1"] >= 8 && z["esp#1"] <= 10) ## expect_true(z["esp#2"] == 0) }) test_that("SAN offsets work with curved terms", { x <- network(n, directed=FALSE,numedges=1) expect_error(san(x ~ edges + offset(gwesp), target.stats=c(100))) expect_error(san(x ~ edges + offset(gwesp), target.stats=c(100), offset.coef=c(1))) y <- san(x ~ edges + offset(gwesp), target.stats=c(100), offset.coef=c(1,1)) z <- summary(y ~ edges) expect_true(z["edges"] >= 98 && z["edges"] <= 102) expect_error(san(x ~ edges + offset(gwesp) + triangle, target.stats=c(100, 10))) expect_error(san(x ~ edges + offset(gwesp) + triangle, target.stats=c(100, 10), offset.coef=c(-Inf))) y <- san(x ~ edges + offset(gwesp) + triangle, target.stats=c(100, 10), offset.coef=c(-Inf,1)) z <- summary(y ~ triangle) expect_true(z["triangle"] == 0) expect_error(san(x ~ edges + gwesp + offset(gwnsp), target.stats=c(100))) expect_error(san(x ~ edges + gwesp + offset(gwnsp), target.stats=c(100), offset.coef=c(-Inf))) y <- san(x ~ edges + gwesp + offset(gwnsp), target.stats=c(100, 15:1, rep(0, 15)), offset.coef=c(-Inf,1)) expect_true(all(summary(y ~ gwnsp) == rep(0, 30))) expect_error(san(x ~ edges + offset(gwnsp) + gwesp, target.stats=c(100))) expect_error(san(x ~ edges + offset(gwnsp) + gwesp, target.stats=c(100), offset.coef=c(-Inf))) y <- san(x ~ edges + offset(gwnsp) + gwesp, target.stats=c(100, 15:1, rep(0, 15)), offset.coef=c(-Inf,1)) expect_true(all(summary(y ~ gwnsp) == rep(0, 30))) }) test_that("san incorporates SAN.invcov= control parameter correctly", { nw <- network.initialize(n, directed=FALSE) nw0 <- san(nw~edges+edges, target.stats=c(0,n), control=control.san(SAN.invcov=diag(c(10000,1)),SAN.maxit=1,SAN.nsteps=n*4)) nwn <- san(nw~edges+edges, target.stats=c(0,n), control=control.san(SAN.invcov=diag(c(1,10000)),SAN.maxit=1,SAN.nsteps=n*4)) expect_equal(network.edgecount(nw0), 0) expect_equal(network.edgecount(nwn), n) })