# File tests/testthat/test-constrain-egocentric.R in package ergm, part of the # Statnet suite of packages for network analysis, https://statnet.org . # # This software is distributed under the GPL-3 license. It is free, # open source, and has the attribution requirements (GPL Section 7) at # https://statnet.org/attribution . # # Copyright 2003-2023 Statnet Commons ################################################################################ n <- 10 m <- 7 propw <- "TNT" #propw <- "random" repeat{ a <- as.logical(rbinom(n, 1, .5)) Mb <- Mi <- Mo <- matrix(0L,n,n) Mo[!a,] <- 1L Mi[,!a] <- 1L Mb <- Mo * Mi diag(Mo) <- diag(Mi) <- diag(Mb) <-0L if(any(Mo) && any(Mi) && any(Mb)) break } test_that("egocentric constraint, directed", { y0 <- network.initialize(n, directed=TRUE) y0 %v% "a" <- a y <- simulate(y0~edges, coef=100, constraints=~egocentric("a", dir="o"), control=control.simulate.formula(MCMC.burnin=10000,MCMC.prop.weight=propw)) expect_equal(as.matrix(y), Mo, ignore_attr=TRUE) y <- simulate(y0~edges, coef=100, constraints=~egocentric("a", dir="i"), control=control.simulate.formula(MCMC.burnin=10000,MCMC.prop.weight=propw)) expect_equal(as.matrix(y), Mi, ignore_attr=TRUE) y <- simulate(y0~edges, coef=100, constraints=~egocentric("a"), control=control.simulate.formula(MCMC.burnin=10000,MCMC.prop.weight=propw)) expect_equal(as.matrix(y), Mb, ignore_attr=TRUE) }) test_that("egocentric constraint, undirected", { y0 <- network.initialize(n, directed=FALSE) y0 %v% "a" <- a y <- simulate(y0~edges, coef=100, constraints=~egocentric("a"), control=control.simulate.formula(MCMC.burnin=10000,MCMC.prop.weight=propw)) expect_equal(as.matrix(y), Mb, ignore_attr=TRUE) }) ## #### Unobserved #### ## y0 <- network.initialize(n, directed=TRUE) ## y0 %v% "a" <- a ## y0[2,3]<-NA ## y0[2,10]<-NA ## y <- simulate(y0~edges, coef=100, constraints=~egocentric("a")+observed, control=control.simulate.formula(MCMC.burnin=10000,MCMC.prop.weight=propw)) ## M[]<-0 ## M[2,3]<-1 ## expect_equal(as.matrix(y), M, ignore_attr=TRUE) #### Bipartite #### y0 <- network.initialize(n, directed=FALSE, bipartite=m) repeat{ a <- as.logical(rbinom(n, 1L, .5)) ae <- a[seq_len(m)] aa <- a[m+seq_len(n-m)] M <- matrix(1L,m,n-m) M[ae,] <- 0L M[,aa] <- 0L if(any(M)) break } y0 %v% "a" <- a test_that("egocentric constraint, bipartite undirected", { y <- simulate(y0~edges, coef=100, constraints=~egocentric("a"), control=control.simulate.formula(MCMC.burnin=10000,MCMC.prop.weight=propw)) expect_equal(as.matrix(y), M, ignore_attr=TRUE) }) ## #### Bipartite Unobserved #### ## y0 <- network.initialize(n, directed=FALSE, bipartite=m) ## y0 %v% "b" <- a ## y0[7,8]<-NA ## y0[6,9]<-NA ## y <- simulate(y0~edges, coef=100, constraints=~blockdiag("b")+observed, control=control.simulate.formula(MCMC.burnin=10000,MCMC.prop.weight=propw)) ## M[]<-0 ## M[6,2]<-1 ## expect_equal(as.matrix(y), M, ignore_attr=TRUE) ## #### Multiple #### ## n <- 10 ## a1 <- rep(1:4,1:4) ## a2 <- rep(1:2,each=5) ## M1<- matrix(0,n,n) ## for(i in unique(a1)){ ## M1[a1==i,a1==i]<-1 ## } ## diag(M1)<-0 ## M2<- matrix(0,n,n) ## for(i in unique(a2)){ ## M2[a2==i,a2==i]<-1 ## } ## diag(M2)<-0 ## M <- M1*M2 ## y0 <- network.initialize(n, directed=FALSE) ## y0 %v% "b1" <- a1 ## y0 %v% "b2" <- a2 ## y <- simulate(y0~edges, coef=100, constraints=~blockdiag("b1") + blockdiag("b2"), control=control.simulate.formula(MCMC.burnin=10000,MCMC.prop.weight=propw)) ## expect_equal(as.matrix(y), M, ignore_attr=TRUE)