# File tests/testthat/test-constrain-dind.R in package ergm, part of the # Statnet suite of packages for network analysis, https://statnet.org . # # This software is distributed under the GPL-3 license. It is free, # open source, and has the attribution requirements (GPL Section 7) at # https://statnet.org/attribution . # # Copyright 2003-2023 Statnet Commons ################################################################################ mean_mat <- function(Mmin, Mmax){ Mmin <- statnet.common::NVL(Mmin, Mmax) Mmax <- statnet.common::NVL(Mmax, Mmin) matrix(ifelse(rbinom(length(Mmin), 1, .5), Mmin, Mmax), nrow(Mmin), ncol(Mmin)) } test_dind_constr <- function(y0, con, Mmin=NULL, Mmax=NULL, response=NULL, ...){ nn <- network.dyadcount(y0, FALSE) test_that(paste0("dyad independent constraint with constraint = ", format(con), ", and ", if(is.directed(y0)) "directed " else "undirected ", if(is.bipartite(y0)) "bipartite ", if(!is.null(response)) "valued ", "network"), { ymin <- simulate(statnet.common::NVL2(response, y0~sum, y0~edges), coef=-100, constraints=con, control=control.simulate.formula(MCMC.burnin=nn*100), response=response, ...) expect_true(all(na.omit(c(suppressWarnings(as.matrix(ymin, attrname=response))==Mmin)))) ymax <- simulate(statnet.common::NVL2(response, y0~sum, y0~edges), coef=+100, constraints=con, control=control.simulate.formula(MCMC.burnin=nn*100), response=response, ...) expect_true(all(na.omit(c(as.matrix(ymax, attrname=response)==Mmax)))) }) } n <- 10 m <- 7 ###### Unconstrained ###### Mmin <- matrix(0,n,n) Mmax <- matrix(1,n,n) diag(Mmax)<-0 #### Directed #### y0 <- as.network(mean_mat(Mmin,Mmax), matrix.type="adjacency", directed=TRUE) test_dind_constr(y0, ~., Mmin, Mmax) #### Undirected #### y0 <- as.network(mean_mat(Mmin,Mmax), matrix.type="adjacency", directed=FALSE) test_dind_constr(y0, ~., Mmin, Mmax) #### Unobserved #### y0 <- as.network(mean_mat(Mmin,Mmax), matrix.type="adjacency", directed=TRUE) y0[2,3]<-NA y0[2,10]<-NA Mmin <- Mmax <- as.matrix(y0) Mmin[2,10] <- Mmin[2,3] <- 0 Mmax[2,10] <- Mmax[2,3] <- 1 test_dind_constr(y0, ~observed, Mmin, Mmax) #### Bipartite #### Mmin <- matrix(0,m,n-m) Mmax <- matrix(1,m,n-m) y0 <- as.network(mean_mat(Mmin,Mmax), matrix.type="adjacency", directed=FALSE, bipartite=m) test_dind_constr(y0, ~., Mmin, Mmax) #### Bipartite Unobserved #### y0[7,8]<-NA y0[6,9]<-NA Mmin <- Mmax <- as.matrix(y0) Mmin[6,2] <- Mmin[7,1] <- 0 Mmax[6,2] <- Mmax[7,1] <- 1 test_dind_constr(y0, ~observed, Mmin, Mmax) # in the block OR unobserved #### Dyads operator #### ## TODO: Put in the same framework as the others. test_that("Dyads() operator for directed networks", { data(sampson) fix_g <- coef(fix_g_mcmc <- ergm(samplike~edges, constraints=~Dyads(~nodematch("group")), control=control.ergm(force.main=TRUE, seed=0))) # Test MCMC. vary_g <- coef(vary_g_mple <- ergm(samplike~edges, constraints=~Dyads(vary=~nodematch("group")))) fix_g_and_c <- coef(ergm(samplike~edges, constraints=~Dyads(~nodematch("group")+nodematch("cloisterville")))) fix_g_vary_c <- coef(ergm(samplike~edges, constraints=~Dyads(~nodematch("group"),~nodematch("cloisterville")))) vary_g_or_c <- coef(ergm(samplike~edges, constraints=~Dyads(vary=~nodematch("group")+nodematch("cloisterville")))) vary_g_fix_c <- coef(ergm(samplike~edges, constraints=~Dyads(vary=~nodematch("group"))+Dyads(~nodematch("cloisterville")))) m <- as.matrix(samplike) g <- outer(samplike%v%"group",samplike%v%"group",FUN=`==`) c <- outer(samplike%v%"cloisterville",samplike%v%"cloisterville",FUN=`==`) n <- network.size(samplike) expect_true(is.dyad.independent(fix_g_mcmc)) expect_true(is.dyad.independent(fix_g_mcmc, "space")) expect_true(is.dyad.independent(fix_g_mcmc, "terms")) expect_true(is.dyad.independent(vary_g_mple)) expect_true(is.dyad.independent(vary_g_mple, "space")) expect_true(is.dyad.independent(vary_g_mple, "terms")) expect_false(is.na(fix_g_mcmc)) expect_false(is.na(vary_g_mple)) expect_equal(fix_g,logit(sum((!g)*m)/(sum(!g))),tolerance=0.03,ignore_attr=TRUE) expect_equal(vary_g,logit(sum(g*m)/(sum(g)-n)),ignore_attr=TRUE) expect_equal(fix_g_and_c,logit(sum((!g&!c)*m)/(sum(!g&!c))),ignore_attr=TRUE) expect_equal(fix_g_vary_c,logit(sum((!g|c)*m)/(sum(!g|c)-n)),ignore_attr=TRUE) expect_equal(vary_g_or_c,logit(sum((g|c)*m)/(sum(g|c)-n)),ignore_attr=TRUE) expect_equal(vary_g_fix_c,logit(sum((g&!c)*m)/(sum(g&!c))),ignore_attr=TRUE) }) test_that("Dyads() operator for bipartite undirected networks", { data(florentine) bfl <- get.inducedSubgraph(flomarriage, 1:7, 8:16) fix_g <- coef(ergm(bfl~edges, constraints=~Dyads(~nodematch(~wealth>median(wealth))))) m <- as.matrix(bfl) wealth <- bfl %v% "wealth" wealth01 <- wealth > median(wealth) w <- outer(wealth01[1:7],wealth01[8:16],FUN=`==`) expect_equal(fix_g,logit(sum((!w)*m)/sum(!w)),ignore_attr=TRUE) })