# File tests/testthat/test-constrain-blockdiag.R in package ergm, part of the # Statnet suite of packages for network analysis, https://statnet.org . # # This software is distributed under the GPL-3 license. It is free, # open source, and has the attribution requirements (GPL Section 7) at # https://statnet.org/attribution . # # Copyright 2003-2023 Statnet Commons ################################################################################ mean_mat <- function(Mmin, Mmax){ Mmin <- statnet.common::NVL(Mmin, Mmax) Mmax <- statnet.common::NVL(Mmax, Mmin) matrix(ifelse(rbinom(length(Mmin), 1, .5), Mmin, Mmax), nrow(Mmin), ncol(Mmin)) } test_dind_constr <- function(y0, con, Mmin=NULL, Mmax=NULL, response=NULL, ...){ nn <- network.dyadcount(y0, FALSE) test_that(paste0("blockdiag constraint with constraint = ", format(con), ", and ", if(is.directed(y0)) "directed " else "undirected ", if(is.bipartite(y0)) "bipartite ", if(!is.null(response)) "valued ", "network"), { ymin <- simulate(statnet.common::NVL2(response, y0~sum, y0~edges), coef=-100, constraints=con, control=control.simulate.formula(MCMC.burnin=nn*100), response=response, ...) expect_true(all(na.omit(c(suppressWarnings(as.matrix(ymin, attrname=response))==Mmin)))) ymax <- simulate(statnet.common::NVL2(response, y0~sum, y0~edges), coef=+100, constraints=con, control=control.simulate.formula(MCMC.burnin=nn*100), response=response, ...) expect_true(all(na.omit(c(as.matrix(ymax, attrname=response)==Mmax)))) }) } n <- 10 m <- 7 ######### Block diagonal ######### a <- rep(1:4,1:4) Mmax <- Mmin <- matrix(0,n,n) for(i in unique(a)){ Mmax[a==i,a==i]<-1 } diag(Mmax)<-0 #### Directed #### y0 <- as.network(mean_mat(Mmin,Mmax), matrix.type="adjacency", directed=TRUE) y0 %v% "b" <- a test_dind_constr(y0, ~blockdiag("b"), Mmin, Mmax) #### Undirected #### y0 <- as.network(mean_mat(Mmin,Mmax), matrix.type="adjacency", directed=FALSE) y0 %v% "b" <- a test_dind_constr(y0, ~blockdiag("b"), Mmin, Mmax) #### Unobserved: disjunction #### y0 <- as.network(mean_mat(Mmin,Mmax), matrix.type="adjacency", directed=TRUE) y0 %v% "b" <- a y0[2,3]<-NA y0[2,10]<-NA Mmin[2,10] <- Mmin[2,3] <- 0 Mmax[2,10] <- Mmax[2,3] <- 1 test_dind_constr(y0, ~blockdiag("b")-observed, Mmin, Mmax) # in the block OR unobserved #### Unobserved: disjunction ergmlhs specification #### y0l <- y0 y0l %ergmlhs% "constraints" <- ~blockdiag("b") test_dind_constr(y0l, ~-observed, Mmin, Mmax) # dot by default test_dind_constr(y0l, ~.-observed, Mmin, Mmax) # dot specified #### Unobserved: conjunction #### Mmin <- Mmax <- as.matrix(y0) Mmin[2,3] <- 0 Mmax[2,3] <- 1 test_dind_constr(y0, ~blockdiag("b")+observed, Mmin, Mmax) # in the block AND unobserved #### Unobserved: conjunction ergmlhs specification #### test_dind_constr(y0l, ~+observed, Mmin, Mmax) # dot by default test_dind_constr(y0l, ~.+observed, Mmin, Mmax) # dot specified #### Bipartite #### a <- unlist(split(a, rep(1:2, n/2))) a <- c(sort(a[1:m]), sort(a[-(1:m)])) Mmin <- Mmax <- matrix(0,m,n-m) for(i in unique(a)){ Mmax[a[1:m]==i,a[-(1:m)]==i]<-1 } y0 <- as.network(mean_mat(Mmin,Mmax), matrix.type="adjacency", directed=FALSE, bipartite=m) y0 %v% "b" <- a test_dind_constr(y0, ~blockdiag("b"), Mmin, Mmax) #### Bipartite Unobserved: disjunction #### y0[7,8]<-NA y0[6,9]<-NA Mmin[6,2] <- Mmin[7,1] <- 0 Mmax[6,2] <- Mmax[7,1] <- 1 test_dind_constr(y0, ~blockdiag("b")-observed, Mmin, Mmax) # in the block OR unobserved #### Bipartite Unobserved: conjunction #### Mmin <- Mmax <- as.matrix(y0) Mmin[6,2] <- 0 Mmax[6,2] <- 1 test_dind_constr(y0, ~blockdiag("b")+observed, Mmin, Mmax) # in the block AND unobserved #### Multiple #### a1 <- rep(1:4,1:4) a2 <- rep(1:2,each=5) Mmin <- M1 <- M2 <- matrix(0,n,n) for(i in unique(a1)){ M1[a1==i,a1==i]<-1 } diag(M1)<-0 for(i in unique(a2)){ M2[a2==i,a2==i]<-1 } diag(M2)<-0 Mmax <- M1*M2 y0 <- as.network(mean_mat(Mmin,Mmax), matrix.type="adjacency", directed=FALSE) y0 %v% "b1" <- a1 y0 %v% "b2" <- a2 test_dind_constr(y0, ~blockdiag("b1") + blockdiag("b2"), Mmin, Mmax) #### Valued #### a <- rep(1:4,1:4) Mmax <- Mmin <- matrix(0,n,n) for(i in unique(a)){ Mmax[a==i,a==i]<-4 } diag(Mmax)<-0 y0 <- as.network(mean_mat(Mmin,Mmax), matrix.type="adjacency", directed=TRUE, ignore.eval=FALSE, names.eval="w") y0 %v% "b" <- a test_dind_constr(y0, ~blockdiag("b"), Mmin, Mmax, response="w", reference=~DiscUnif(0,4))