# File tests/testthat/test-multinet.R in package ergm.multi, part of the # Statnet suite of packages for network analysis, https://statnet.org . # # This software is distributed under the GPL-3 license. It is free, # open source, and has the attribution requirements (GPL Section 7) at # https://statnet.org/attribution . # # Copyright 2003-2024 Statnet Commons ################################################################################ data(samplk) logit <- function(p) log(p/(1-p)) times <- 1:3 samplk1%n%"t" <- times[1] samplk1%e%"w" <- floor(runif(network.edgecount(samplk1), 0, 4)) samplk2%n%"t" <- times[2] samplk2%e%"w" <- floor(runif(network.edgecount(samplk2), 0, 4)) samplk3%n%"t" <- times[3] samplk3%e%"w" <- floor(runif(network.edgecount(samplk3), 0, 4)) samplkl <- list(samplk1, samplk2, samplk3) samplks <- Networks(samplk1, samplk2, samplk3) test_that("N() summary with an LM and noncompacted stats", { summ.N <- summary(samplks~N(~edges+nodematch("cloisterville"), ~1+t), term.options=list(N.compact_stats=FALSE)) summ.l <- unlist(lapply(samplkl, function(nw) summary(statnet.common::nonsimp_update.formula(~edges+nodematch("cloisterville"), nw~., from.new="nw")))) names(summ.l) <- paste0("N#", rep(1:3, each=2), "~", names(summ.l)) expect_equal(summ.N, summ.l) }) test_that("N() summary with offset and compacted stats", { summ.N <- summary(samplks~N(~edges, offset=~t)) summ.l <- sapply(samplkl, function(nw) summary(statnet.common::nonsimp_update.formula(~edges, nw~., from.new="nw"))) summ.l <- c(sum(summ.l), sum(summ.l*1:3)) expect_equal(summ.N, summ.l, ignore_attr=TRUE) }) test_that("Valued N() summary with an LM and noncompacted stats", { summ.N <- summary(samplks~N(~sum+nodematch("cloisterville", form="sum"), ~1+t), term.options=list(N.compact_stats=FALSE), response="w") summ.l <- unlist(lapply(samplkl, function(nw) summary(statnet.common::nonsimp_update.formula(~sum+nodematch("cloisterville", form="sum"), nw~., from.new="nw"), response="w"))) expect_equal(summ.N, summ.l, ignore_attr=TRUE) }) test_that("Valued N() summary with offset and compacted stats", { summ.N <- summary(samplks~N(~sum, offset=~t), response="w") summ.l <- sapply(samplkl, function(nw) summary(statnet.common::nonsimp_update.formula(~sum, nw~., from.new="nw"), response="w")) summ.l <- c(sum(summ.l), sum(summ.l*1:3)) expect_equal(summ.N, summ.l, ignore_attr=TRUE) }) pl <- lapply(samplkl, function(nw) ergmMPLE(statnet.common::nonsimp_update.formula(~edges+nodematch("cloisterville"), nw~., from.new="nw"))) for(N.compact_stats in c(FALSE,TRUE)){ testlab <- if(N.compact_stats) "compacted stats" else "noncompacted stats" test_that(paste("N() estimation with an LM and", testlab),{ # Three networks, jointly. ergmfit <- ergm(samplks~N(~edges+nodematch("cloisterville"), ~1+t), control=control.ergm(term.options=list(N.compact_stats=N.compact_stats))) nr <- sapply(lapply(pl, `[[`, "response"),length) y <- unlist(lapply(pl, `[[`, "response")) x <- do.call(rbind,lapply(pl, `[[`, "predictor")) x <- as.data.frame(cbind(x,t=rep(times, nr))) w <- unlist(lapply(pl, `[[`, "weights")) glmfit <- glm(y~t*nodematch.cloisterville,data=x,weights=w,family="binomial") expect_equal(coef(glmfit),coef(ergmfit), ignore_attr=TRUE, tolerance=1e-7) }) test_that(paste("N() estimation with an LM, subsetting, and", testlab),{ # Ignore second (test subset). ergmfit <- ergm(samplks~N(~edges+nodematch("cloisterville"), ~1+t, subset=quote(t!=2)), control=control.ergm(term.options=list(N.compact_stats=N.compact_stats))) pl2 <- pl[-2] times2 <- times[-2] nr <- sapply(lapply(pl2, `[[`, "response"),length) y <- unlist(lapply(pl2, `[[`, "response")) x <- do.call(rbind,lapply(pl2, `[[`, "predictor")) x <- as.data.frame(cbind(x,t=rep(times2, nr))) w <- unlist(lapply(pl2, `[[`, "weights")) glmfit <- glm(y~t*nodematch.cloisterville,data=x,weights=w,family="binomial") expect_equal(coef(glmfit),coef(ergmfit), ignore_attr=TRUE, tolerance=1e-7) }) test_that(paste("N() estimation with an LM, subsetting down to only 1 network, and", testlab),{ # Ignore first and third (test subset). expect_warning(ergmfit <- ergm(samplks~N(~edges+nodematch("cloisterville"), ~1+t, subset=quote(t==2)), control=control.ergm(term.options=list(N.compact_stats=N.compact_stats))), ".*model is nonidentifiable.*") pl2 <- pl[2] times2 <- times[2] nr <- sapply(lapply(pl2, `[[`, "response"),length) y <- unlist(lapply(pl2, `[[`, "response")) x <- do.call(rbind,lapply(pl2, `[[`, "predictor")) x <- as.data.frame(cbind(x,t=rep(times2, nr))) w <- unlist(lapply(pl2, `[[`, "weights")) glmfit <- glm(y~t*nodematch.cloisterville,data=x,weights=w,family="binomial") # Note that unlike glmift, ergm cannot detect nonidentifiability at # this time. if(N.compact_stats){ expect_equal(na.omit(coef(glmfit)),na.omit(coef(ergmfit)), ignore_attr=TRUE) }else{ expect_equal(na.omit(coef(glmfit)), c(matrix(c(1,2,0,0, 0,0,1,2),2,4,byrow=TRUE)%*%coef(ergmfit)), ignore_attr=TRUE, tolerance=1e-7) } }) } test_that("N() warns on parameter name mismatch",{ samplk1%v%"x" <- 1:2 samplk2%v%"x" <- 3:4 expect_warning(summary(Networks(samplk1,samplk2)~N(~nodemix("x"))), "different parameter names") })